Pharmacophore-based structural identification, synthesis, and structure-activity relationships of a new class of muscarinic M3 receptor antagonists, the diaryl imidazolidin-2-one derivatives, are described. The versatility of the discovered scaffold allowed for several structural modifications that resulted in the discovery of two distinct classes of compounds, specifically a class of tertiary amine derivatives (potentially useful for the treatment of overactive bladder by oral administration) and a class of quaternary ammonium salt derivatives (potentially useful for the treatment of respiratory diseases by the inhalation route of administration). In this paper, we describe the synthesis and biological activity of tertiary amine derivatives. For these compounds, selectivity for the M3 receptor toward the M2 receptor was crucial, because the M2 receptor subtype is mainly responsible for adverse systemic side effects of currently marketed muscarinic antagonists. Compound 50 showed the highest selectivity versus M2 receptor, with binding affinity for M3 receptor Ki = 4.8 nM and for M2 receptor Ki = 1141 nM. Functional in vitro studies on selected compounds confirmed the antagonist activity toward the M3 receptor and functional selectivity toward the M2 receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm061159aDOI Listing

Publication Analysis

Top Keywords

receptor
9
diaryl imidazolidin-2-one
8
imidazolidin-2-one derivatives
8
class muscarinic
8
tertiary amine
8
amine derivatives
8
derivatives treatment
8
selectivity receptor
8
receptor receptor
8
derivatives
5

Similar Publications

Background: Prostate-specific antigen (PSA) kinetics has been investigated as a prognostic marker in post hoc analyses of clinical trials. This study validated the prognostic value of rapid and deep PSA decline in metastatic hormone-sensitive prostate cancer (mHSPC) using real-world data.

Methods: In total, 1296 patients with mHSPC were retrospectively reviewed.

View Article and Find Full Text PDF

Objective: To evaluate the effectiveness of first switching between monoclonal antibodies (mAbs) targeting calcitonin gene-related peptide (CGRP) or its receptor in the treatment of migraine.

Background: Although mAbs targeting CGRP or its receptor have emerged as a leading treatment for migraine prevention, a proportion of patients do not respond. While switching between these antibodies is a common clinical practice in such cases, the effectiveness remains a subject of study.

View Article and Find Full Text PDF

Valsa canker, caused by fungal pathogens in Valsa species, is a fungal disease of apple and pear growing in China and even in Asia. Malectin-like kinases play crucial roles in plant recognition of the pathogen-induced signals and subsequent activation of partially host immune responses. However, the role of MEDOS1 (MDS1), a Malectin-like kinase, in plant immunity has not yet been extensively explored.

View Article and Find Full Text PDF

Purpose: Multigene assays guide treatment decisions in early-stage hormone receptor-positive breast cancer. OncoFREE, a next-generation sequencing assay using 179 genes, was developed for this purpose. This study aimed to evaluate the concordance between the Oncotype DX (ODX) Recurrence Score (RS) and the OncoFREE Decision Index (DI) and to compare their performance.

View Article and Find Full Text PDF

Overactivation of the Transforming Growth Factor Beta (TGF-β) pathway is implicated in the pathogenesis of cytopenias in Myelodysplastic syndromes (MDS) and Acute Myeloid Leukemia (AML). IOA-359 and IOA-360 are potent small molecule inhibitors of the TGF-beta Receptor type I kinase (TGF-βRI, also referred to as ALK5, activin receptor-like kinase 5) that abrogate SMAD phosphorylation in hematopoietic cell lines. Both inhibitors were able to inhibit TGF-β mediated gene transcription at specific doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!