Histone deacetylase (HDAC) inhibitors represent a promising group of anticancer agents. This paper shows that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) stimulated at 5-10 microM apoptosis in human hepatoma HepG2 and Huh6 cells, but was ineffective in primary human hepatocytes (PHH). In HepG2 cells SAHA induced the extrinsic apoptotic pathway, increasing the expression of both FasL and FasL receptor and causing the activation of caspase-8. Moreover, SAHA enhanced the level of Bim proteins, stimulated alternative splicing of the Bcl-X transcript with the expression of the proapoptotic Bcl-Xs isoform, induced degradation of Bid into the apoptotic factor t-Bid and dephosphorylation and inactivation of the anti-apoptotic factor Akt. Consequently, SAHA caused loss of mitochondrial transmembrane potential, release of cytochrome c from mitochondria, activation of caspase-3 and degradation of PARP. Interestingly, a combination of suboptimal doses of SAHA (1 microM) and bortezomib (5-10 nM), a potent inhibitor of 26S proteasome, synergistically induced apoptosis in both HepG2 and Huh6 cells, but was ineffective in PHH. Combined treatment increased with synergistic effects the expression levels of c-Jun, phospho-c-Jun and FasL and the production of Bcl-Xs. These effects were accompanied by activation of Bid, caspase-8 and 3. In conclusion, SAHA stimulated apoptosis in hepatoma cells and exerted a synergistic apoptotic effect when combined with bortezomib. In contrast, these treatments were quite ineffective in inducing apoptosis in PHH. Thus, our results suggest the potential application of the SAHA/bortezomib combination in clinical trials for liver cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-007-0063-yDOI Listing

Publication Analysis

Top Keywords

apoptosis hepatoma
8
hepatoma cells
8
saha stimulated
8
hepg2 huh6
8
huh6 cells
8
cells ineffective
8
saha
7
apoptosis
5
cells
5
saha induces
4

Similar Publications

Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a highly aggressive malignancy with limited viable therapeutic options. For early HCC, resection surgery is currently the most effective treatment. However, in advanced stages, resection alone does not sufficiently address the disease, so finding a method with a better prognosis is necessary.

View Article and Find Full Text PDF

Programmed cell death protein 5 inhibits hepatocellular carcinoma progression by inducing pyroptosis through regulation of TGF-β/Smad2/3/Snail pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Hainan Medical University, No. 48 Baishuitang Road, Haikou City 570100, Hainan Province, China. Electronic address:

Background: Programmed cell death protein 5 (PDCD5) is involved in apoptosis and is regarded as a tumor suppressor in various tumors. However, its role and underlying molecular mechanisms in hepatocellular carcinoma (HCC) remain unclear.

Methods: PDCD5-overexpressing cell and xenograft tumor models were developed.

View Article and Find Full Text PDF

Hepatitis B Virus X Protein promotes VWF-mediated HCC progression through ST8SIA6-AS1/miR-3150b-3p/ASCL1 axis.

Eur J Pharmacol

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China. Electronic address:

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors, often with a poor prognosis. The HBx protein, encoded by the hepatitis B virus (HBv), is significantly associated with the pathogenesis of HCC. Although studies suggested that the von Willebrand factor (vWF) is key to the progression of HCC associated with HBv, the underlying mechanisms are largely obscure.

View Article and Find Full Text PDF

Background: Nanotechnology has increasingly been applied in the diagnosis and treatment of hepatocellular carcinoma (HCC) over the past two decades. This study aims to explore the utilization of nanotechnology in HCC through a bibliometric analysis, identifying key themes, trends, and contributions in this field.

Methods: The study utilized VOSviewer and CiteSpace software to perform a bibliometric analysis, evaluating scholarly contributions related to nanotechnology in HCC.

View Article and Find Full Text PDF

Design and Mechanism Study of 6c, a Novel Artesunate Derivatives, for Anti-Hepatocellular Carcinoma.

J Hepatocell Carcinoma

January 2025

Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, Shandong, People's Republic of China.

Objective: Artesunate can inhibit the proliferation of various tumor cells and has practical value in developing anti-tumor drugs. However, its biological activity against hepatocellular carcinoma is weak. The efficacy of its anti-tumor effect needs to be improved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!