Use of small membrane pumps, instead of peristaltic pumps, to introduce sample and reagent solutions into the spectrometer has several advantages in atomic fluorescence spectrometric determination of mercury. This simple modification results in a substantial saving in the time required for the measurements and so 90% of reagent solution volumes and 95% of sample solution volumes are saved, with a consequent decrease in the volume of waste generated. The sampling frequency is almost tripled, with no deterioration in sensitivity, which is similar to that obtained by use of peristaltic pumps. The relative standard deviation for ten consecutive measurements of a 1 microg L-1 mercury solution was approximately 2%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-007-1216-0 | DOI Listing |
Mol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Mikrochim Acta
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.
View Article and Find Full Text PDFAnal Chem
January 2025
The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.
An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.
Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China.
Biogenic amines (BAs), produced in fish and seafood due to microbial contamination, pose significant health risks. This study introduces a novel ratiometric fluorescent probe, synthesized by integrating rhodamine 6G(R6G) and gold nanoparticles (AuNCs), for the sensitive and specific detection of BAs. The probe operates on the principle of BAs hydrolysis, catalyzed by diamine oxidase, to produce hydrogen peroxide (HO), which selectively quenches the fluorescence of AuNCs at 620 nm, while the fluorescence of R6Gat 533 nm remains unaffected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!