Prostate cancer is one of the most common cancers in men, with more than 500,000 new worldwide cases reported annually, resulting in 200,000 deaths of mainly older men in developed countries. Existing treatments have not proved very effective in managing prostate cancer, and continuing efforts therefore are ongoing to explore novel targets and strategies for future therapies. LAPSER1 has been identified as a candidate tumor suppressor gene in prostate cancer, but its true functions remain unknown. We report here that LAPSER1 colocalizes to the centrosomes and midbodies in mitotic cells with gamma-tubulin, MKLP1, and p80 katanin, and is involved in cytokinesis. Moreover, RNAi-mediated disruption of LAPSER1, which is accompanied by the mislocalization of p80 katanin, results in malformation of the central spindle. Significantly, the enhanced expression of LAPSER1 induces binucleation and renders the cells resistant to oncogenic transformation. In cells transformed by the v-Fps oncogene, overexpressed LAPSER1 induces abortive cytokinesis, followed by mitotic catastrophe in a p80 katanin-dependent manner. Cells that are rescued from this apoptotic pathway with Z-VAD-fmk display karyokinesis. These results suggest that LAPSER1 participates in cytokinesis by interacting with p80 katanin, the disruption of which may potentially cause genetic instability and cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.06-7254comDOI Listing

Publication Analysis

Top Keywords

p80 katanin
16
prostate cancer
12
tumor suppressor
8
lapser1 induces
8
lapser1
7
p80
5
lapser1 putative
4
putative cytokinetic
4
cytokinetic tumor
4
suppressor centrosome
4

Similar Publications

Microtubule-severing enzymes (MSEs), such as Katanin, Spastin, and Fidgetin play essential roles in cell division and neurogenesis. They damage the microtubule (MT) lattice, which can either destroy or amplify the MT cytoskeleton, depending on the cellular context. However, little is known about how they interact with their substrates.

View Article and Find Full Text PDF

Epidermal cells of dark-grown plant seedlings reorient their cortical microtubule arrays in response to blue light from a net lateral orientation to a net longitudinal orientation with respect to the long axis of cells. The molecular mechanism underlying this microtubule array reorientation involves katanin, a microtubule severing enzyme, and a plant-specific microtubule associated protein called SPIRAL2. Katanin preferentially severs longitudinal microtubules, generating seeds that amplify the longitudinal array.

View Article and Find Full Text PDF

A potential posttranscriptional regulator for p60-katanin: miR-124-3p.

Cytoskeleton (Hoboken)

December 2023

Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey.

Katanin is a microtubule severing protein belonging to the ATPase family and consists of two subunits; p60-katanin synthesized by the KATNA1 gene and p80-katanin synthesized by the KATNB1 gene. Microtubule severing is one of the mechanisms that allow the reorganization of microtubules depending on cellular needs. While this reorganization of microtubules is associated with mitosis in dividing cells, it primarily takes part in the formation of structures such as axons and dendrites in nondividing mature neurons.

View Article and Find Full Text PDF

The up-regulation of katanin P80 has been reported to be correlated with a larger tumor size and lymph node metastasis in non-small-cell lung cancer (NSCLC) patients. And lncRNA MALAT1 was demonstrated to promote the proliferation of chronic myeloid leukemia cells via modulating miR-328. 135 lung cancer patients were divided into 6 groups according to their genotypes of MALAT1.

View Article and Find Full Text PDF

Crystal structure of the C-terminal domain of the plant-specific microtubule-associated protein Spiral2.

Acta Crystallogr F Struct Biol Commun

January 2023

Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.

Plant cells form microtubule arrays, called `cortical microtubules', beneath the plasma membrane which are critical for cell-wall organization and directional cell growth. Cortical microtubules are nucleated independently of centrosomes. Spiral2 is a land-plant-specific microtubule minus-end-targeting protein that stabilizes the minus ends by inhibiting depolymerization of the filament.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!