A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impaired discrimination of surface friction contributes to pinch grip deficit after stroke. | LitMetric

Background: Impaired sensation and force production could both contribute to handgrip limitation after stroke. Clinically, training is usually directed to motor impairment rather than sensory impairment despite the prevalence of sensory deficit and the importance of sensory input for grip control.

Objective: The aim of this study was to investigate if sensory deficits contribute to pinch grip dysfunction beyond that attributable to motor deficits poststroke.

Methods: The study enlisted 45 stroke participants and 45 healthy controls matched for age, gender, and hand dominance. Ability to differentiate surface friction (Friction Discrimination Test [FDT]), match object weight (Weight Matching Test [WMT]), produce grip force to track a visual target (Visually Guided Pinch Test [VGPT]), and perform a Pinch-Grip Lift-and-Hold Test (PGLHT) was quantified relative to normative performance, as defined by matched controls. The relationship between sensory ability (FDT, WMT) and altered PGLHT performance adjusted for motor ability (VGPT) after stroke was then examined using multivariate regression.

Results: Deficits in FDT, WMT, and VGPT ability were present in at least half of the stroke sample and were largely independent across the variables. Poorer friction discrimination was significantly associated with longer latencies of grip-lift (r = .34; P = .03) and grip force dysregulation (r= .34; P= .03) after the impact of VGPT was statistically removed from PGLHT ability. However, performance on WMT did not relate to either PGLHT deficit.

Conclusion: The findings indicate that impaired friction discrimination ability contributes to altered timing and force adjustment during PGLHT poststroke.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1545968306295560DOI Listing

Publication Analysis

Top Keywords

friction discrimination
12
surface friction
8
pinch grip
8
grip force
8
fdt wmt
8
ability
6
friction
5
grip
5
stroke
5
sensory
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!