Plantain fibre bundles isolated from Colombian agro-industrial residues.

Bioresour Technol

New Materials Group, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia.

Published: February 2008

Comestible fruit production from Musaceas plants is an important economical activity in developing countries like Colombia. However, it generates a large amount of agro-industrial residues. Some of them are a potential resource of natural fibres, which can be used as reinforcement for composite materials. In this work, a series of commercial plantain (Musa AAB, cv "Dominico Harton") fibre bundles extracted from pseudostem, leaf sheath and rachis agricultural wastes were analyzed. Mechanical decortication and biological retting processes were used during fiber extraction. No significant differences in composition of vascular bundles were observed for both extraction processes. Gross morphological characteristics and mechanical behavior have been evaluated. Conducting tissues with spiral-like arrangement are observed attached to fibre bundles. This fact suggests a big amount of these tissues in commercial plantain plants. Both used extraction methods are not enough to remove them. Pseudostem fibre bundles have higher specific strength and modulus and lower strain at break than leaf sheath and rachis fibre bundles, having values comparable to other lignocellulosic fibres bundles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2007.01.012DOI Listing

Publication Analysis

Top Keywords

fibre bundles
20
agro-industrial residues
8
commercial plantain
8
leaf sheath
8
sheath rachis
8
bundles
7
plantain fibre
4
bundles isolated
4
isolated colombian
4
colombian agro-industrial
4

Similar Publications

White Matter Tract Crossing and Bottleneck Regions in the Fetal Brain.

Hum Brain Mapp

January 2025

Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.

There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been investigated for adult brains.

View Article and Find Full Text PDF

Objectives: Hydroxyapatite (HAp)/collagen (Col) cylinders with laminated collagen layers were implanted into the tibial diaphysis of rats and examined histochemically to clarify how the orientation of HAp and Col bone-like nanocomposite fibers in HAp/Col blocks affects bone resorption and formation.

Methods: HAp/Col fibers were synthesized and compressed into cylindrical blocks to mimic bone nanostructures. These were implanted into the cortical bone cavities of 10-week-old male Wistar rats with fiber bundles parallel to the tibial surface.

View Article and Find Full Text PDF

A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.

View Article and Find Full Text PDF

The correlations of several fundamental properties of human brain connections are investigated in a consensus connectome, constructed from 1064 braingraphs, each on 1015 vertices, corresponding to 1015 anatomical brain areas. The properties examined include the edge length, the fiber count, or edge width, meaning the number of discovered axon bundles forming the edge and the occurrence number of the edge, meaning the number of individual braingraphs where the edge exists. By using our previously published robust braingraphs at https://braingraph.

View Article and Find Full Text PDF

Here, we report on the first part of a two-part experimental series to elucidate spatiotemporal cytoskeletal remodeling, which underpins the evolution of stem cell shape and fate, and the emergence of tissue structure and function. In Part I of these studies, we first develop protocols to stabilize microtubules exogenously using paclitaxel (PAX) in a standardized model murine embryonic stem cell line (C3H/10T1/2) to maximize comparability with previously published studies. We then probe native and microtubule-stabilized stem cells' capacity to adapt to volume changing stresses effected by seeding at increasing cell densities, which emulates local compression and tissue template formation during development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!