The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis.

FEBS Lett

Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria.

Published: April 2007

Replacements of Asp-295 by Asn (D295N) and Glu (D295E) decreased the catalytic center activity of Leuconostoc mesenteroides sucrose phosphorylase to about 0.01% of the wild-type level (k(cat)=200s(-1)). Glucosylation and deglucosylation steps of D295N were affected uniformly, approximately 10(4.3)-fold, and independently of leaving group ability and nucleophilic reactivity of the substrate, respectively. pH dependences of the catalytic steps were similar for D295N and wild-type. The 10(5)-fold preference of the wild-type for glucosyl transfer compared with mannosyl transfer from phosphate to fructose was lost in D295N and D295E. Selective disruption of catalysis to glucosyl but not mannosyl transfer in the two mutants suggests that the side chain of Asp-295, through a strong hydrogen bond with the equatorial sugar 2-hydroxyl, stabilizes the transition states flanking the beta-glucosyl enzyme intermediate by > or = 23kJ/mol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2007.02.060DOI Listing

Publication Analysis

Top Keywords

leuconostoc mesenteroides
8
mesenteroides sucrose
8
sucrose phosphorylase
8
steps d295n
8
mannosyl transfer
8
role asp-295
4
asp-295 catalytic
4
catalytic mechanism
4
mechanism leuconostoc
4
phosphorylase probed
4

Similar Publications

Leuconostoc mesenteroides strain MS4-derived bacteriocins: A potent antimicrobial arsenal for controlling Xylella fastidiosa infection.

Microbiol Res

January 2025

International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, 1, Portici, Naples 80055, Italy. Electronic address:

Xylella fastidiosa subsp. pauca (Xfp) currently presents a serious threat to agriculture in Europe and in the Mediterranean, following its discovery in several countries. Addressing this bacterial plant disease with traditional agricultural practices and management strategies has proven inadequate, highlighting the urgent need for effective and environmentally safe antibacterial solutions.

View Article and Find Full Text PDF

Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from DB-14 Isolated from Flower.

J Microbiol Biotechnol

January 2025

Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.

is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .

View Article and Find Full Text PDF

Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.

View Article and Find Full Text PDF

Screening and Selection of Native Lactic Acid Bacteria Isolated from Chilean Grapes.

Foods

January 2025

Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile.

The aim of this study was investigating the biological diversity of lactic acid bacteria isolated from Chilean grapes and identifying potential candidates for use as malolactic fermentation starter cultures. The isolated bacteria underwent a comprehensive six-stage screening process, which was mutually exclusive except for the evaluation of tyramine production and citric acid intake. This process included morphological, metabolic, fermentation yield, and resistance tests to identify promising malolactic strains.

View Article and Find Full Text PDF

Dextran is an exopolysaccharide (EPS) with multifunctional applications in the food and pharmaceutical industries, primarily synthesized from . Dextran can be produced from dextrin through fermentation, utilizing its dextran dextrinase activity. This study examined how jar fermentor conditions impact the growth and enzyme activity of , with a focus on the effects of pH on dextran synthesis via bioconversion (without pH control, pH 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!