C-undodecylcalix[4]-resorcinarene (C(11)-resorcinarene)-capped anatase TiO(2) nanoparticles have been synthesized and could be isolated and redispersed in different nonaqueous solvents. The adsorption of C(11)-resorcinarene onto the surface of TiO(2) nanoparticles led the shifting of the onset wavelength of the optical absorption in the visible range along with a broad band centered at 422 nm corresponding to ligand-to-metal charge transfer transition within the surface titanium(IV)-C(11)-resorcinarene complex. The interaction of TiO(2) nanoparticle with C(11)-resorcinarenes was investigated by photoluminescence (PL). Proton nuclear magnetic resonance ((1)H NMR) spectroscopy study revealed that the C(11)-resorcenarene molecules adsorbed chemically onto the surfaces of TiO(2) nanoparticles. The average particle diameter of bare anatase TiO(2) and C(11)-resorcinarene-capped TiO(2) was determined using transmission electron microscopy (TEM) and was found to be equal to ca. 5 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2007.01.094DOI Listing

Publication Analysis

Top Keywords

tio2 nanoparticles
16
anatase tio2
12
nonaqueous solvents
8
tio2
7
synthesis isolation
4
isolation redispersion
4
redispersion resorcinarene-capped
4
resorcinarene-capped anatase
4
nanoparticles
4
nanoparticles nonaqueous
4

Similar Publications

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.

View Article and Find Full Text PDF

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.

View Article and Find Full Text PDF

Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!