By means of 2D NMR techniques, all backbone resonances in the 1H NMR spectrum of the single-stranded DNA binding protein encoded by gene V of the filamentous phage IKe have been assigned sequence specifically (at pH 4.6, T = 298 K). In addition, a major part of the side chain resonances could be assigned as well. Analysis of NOESY data permitted the elucidation of the secondary structure of IKe gene V protein. The major part of this secondary structure is present as an antiparallel beta-sheet, i.e., as two beta-loops which partly combine into a triple-stranded beta-sheet structure, one beta-loop and one triple-stranded beta-sheet structure. It is shown that a high degree of homology exists with the secondary structure of the single-stranded DNA binding protein encoded by gene V of the distantly related filamentous phage M13.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00119a039DOI Listing

Publication Analysis

Top Keywords

secondary structure
16
single-stranded dna
12
dna binding
12
binding protein
12
protein encoded
12
nmr spectrum
8
encoded gene
8
filamentous phage
8
triple-stranded beta-sheet
8
beta-sheet structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!