Chronic myeloid leukaemia (CML) is a myeloproliferative disorder characterized by uncontrolled growth of progenitor cells expressing the tyrosine kinase fusion gene product, Bcr-Abl. At present, little is known regarding how TGFbeta, and downstream Smad transcription factors, influence CML cell proliferation in the context of Bcr-Abl expression. Here we show that ectopic Bcr-Abl expression dramatically increases TGFbeta/Smad-dependent transcriptional activity in Cosl cells, and that this may be due to enhancement of Smad promoter activity. Bcr-Abl expressing TF-1 myeloid cells are more potently growth arrested by TGFbeta compared to the parental TF-1 cell line. Additionally, growth of Bcr-Abl-expressing CD34+ cells from chronic phase CML patients is inhibited by TGFbeta and, interestingly, treatment of a non-proliferating CD34+ CML cell sub-population with the TGFbeta kinase inhibitor SB431542 enhanced cell death mediated by the Bcr-Abl inhibitor imatinib. Our data suggest that the expression of Bcr-Abl leads to hyper-responsiveness of myeloid cells to TGFbeta, and we hypothesise that this novel cross-regulatory mechanism might play an important role in maintaining the transformed progenitor cell population in CML.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2007.02.048DOI Listing

Publication Analysis

Top Keywords

chronic myeloid
8
myeloid leukaemia
8
cml cell
8
bcr-abl expression
8
myeloid cells
8
bcr-abl
7
cell
6
cml
5
cells
5
tgfbeta
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!