The kinetics of the lamellar (L alpha)-inverse hexagonal (HII) phase transition in diacylphosphatidylethanolamine (PE)--water systems were probed with time-resolved X-ray diffraction. Transition kinetics in the fast time regime (approximately 100 ms) were studied by initiating large temperature jumps (up to 30 degrees C) with a 50-ms electrical current pulse passed through a lipid-salt water dispersion, resulting in ohmic heating of the sample. Diffraction with a time resolution to 10 ms was acquired at the National Synchrotron Light Source. The time constant for the phase transition for 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was on the order of 100 ms for the largest temperature jumps recorded. Faster transition behavior was found for a 1,2-dielaidoyl-sn-glycero-3-PE mixture. The HII lattice parameters for both systems were seen to swell from an initial value commensurate with the lamellar lattice to the final equilibrium value. The rate of swelling was seen to be independent of the magnitude of the temperature jump. For small temperature jumps (less than 10 degrees C), the phase transition kinetics slow dramatically, and transition studies can readily be performed on a conventional rotating anode X-ray source. At 4 degrees C, a DOPE sample was observed to slowly convert to the hexagonal phase over the course of a week, with the decay in the lamellar intensity fitting a power law behavior over four decades of time. This power law behavior is shown to have interesting consequences to the determination of the phase transition temperature of lipid-water dispersions by conventional methods such as calorimetry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00119a017 | DOI Listing |
ACS Macro Lett
January 2025
The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland.
Sci Rep
January 2025
Saint Petersburg State University, St. Petersburg, 198504, Russia.
Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, Brazil. Electronic address:
In response to the growing need to expand the knowledge base on novel, more sustainable protein sources, this study investigated the effectiveness of cowpea protein concentrate (CPC) as a natural emulsifying agent, examining the relationships between pH (3-11), oil concentration (2-10 %), and emulsion stability. pH and oil concentration significantly impacted droplet size distribution, with uniformity decreasing in the order of pH 9 > pH 11 > pH 7, which was attributed to droplet coalescence and flocculation. As evidenced by circular dichroism, alkalinity induced a slight increase in the beta-sheet content of CPC, while simultaneously reducing the alpha-helix content.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:
J Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!