Melatonin is known to regulate a variety of physiological processes including control of circadian rhythms, regulation of seasonal reproductive function, regulation of body temperature, and so forth. Accumulating evidence from in vitro and in vivo experiments using rodent and chicken has also suggested that melatonin may have an influence on skeletal growth and bone formation. However, little is known about the effects of melatonin on human osteoblasts, which thus remains to be elucidated. This study was performed to determine whether melatonin could affect the proliferation and differentiation of human osteoblasts in vitro and to demonstrate the possibility that melatonin could be applied as a pharmaceutical agent to shorten the treatment period of bone fracture, various osteotomies, and bone distraction. Reverse transcription-polymerase chain reaction and Western blot analysis showed that human osteoblasts expressed melatonin 1a receptor and that its expression levels decreased gradually with the age of the hosts. Melatonin stimulated the proliferation and alkaline phosphatase activity of human osteoblasts in a dose-dependent manner at the pharmacological concentrations. Melatonin also promotes gene expression of type I collagen, osteopontin, bone sialoprotein, and osteocalcin in a dose-dependent manner, and stimulated the mineralized matrix formation in vitro. Moreover, intraperitoneal administration of melatonin to mice increased the volume of newly formed cortical bone of femora. These results demonstrated that melatonin directly accelerated the differentiation of osteoblasts of human as well as rodent and chicken and also suggested that melatonin could be applied as a pharmaceutical agent to promote bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-079X.2006.00410.xDOI Listing

Publication Analysis

Top Keywords

human osteoblasts
16
melatonin
12
cortical bone
8
bone formation
8
rodent chicken
8
chicken suggested
8
suggested melatonin
8
melatonin applied
8
applied pharmaceutical
8
pharmaceutical agent
8

Similar Publications

Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.

View Article and Find Full Text PDF

The Management of Bone Defects in Rett Syndrome.

Calcif Tissue Int

January 2025

Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.

Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) has garnered significant attention due to its critical roles in leukemia pathogenesis, cancer metastasis, and bone marrow failure. BMAT is a metabolically active, distinct tissue that differs from other fat depots. Marrow adipocytes, closely interacting with hematopoietic stem/progenitor cells and osteoblasts, play a pivotal role in regulating their functions.

View Article and Find Full Text PDF

Bone remodeling maintains the robustness of the bone tissue by balancing bone resorption by osteoclasts and bone formation by osteoblasts. Although these cells together play a crucial role in bone remodeling, only a few reports are available on the common factors involved in the differentiation of the two types of cells. Here, we show family with sequence similarity 102 member A (Fam102a) as a bone-remodeling factor that positively regulates both osteoclast and osteoblast differentiation.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!