An integrated analytical approach for the enrichment, detection, and sequencing of phosphopeptides using matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS) was developed. On the basis of C18-functionalized Fe3O4 nanoparticles, the enrichment method was designed not only to specifically trap phosphopeptides, but also nonphosphorylated peptides, both of which can be subsequently desorbed selectively and directly for MALDI-MS analysis without an elution step. Peptide binding is afforded by the C18-derivatization, whereas the highly selective capture of phosphopeptides is based on higher binding affinity afforded by additional metal chelating interaction between the Fe3O4 nanoparticles and the phosphate groups. Upon binding, the initial aqueous wash allows desalting, while a second and a third wash with high acetonitrile content coupled with diluted sulfuric acid and ammonia removes most of the bound nonphosphorylated peptides. Selective or sequential mapping of the peptides and phosphopeptides can, thus, be effected by spotting the washed nanoparticles onto the MALDI target plate along with judicious choice of matrices. The inclusion of phosphoric acid in a 2,5-dihydroxybenzoic acid matrix allows the desorption and detection of phosphopeptides, whereas an alpha-cyano-4-hydroxy-cinnamic acid matrix with formic acid allows only the desorption of nonphosphorylated peptides. The method used to enrich phosphopeptides prior to MS applications is more sensitive and tolerable to sodium dodecyl sulfate than IMAC. We have demonstrated the applicability of C18-functionalized Fe3O4 nanoparticles in the detection of in vitro phosphorylation sites on the myelin basic protein, and at least 17 phosphopeptides were identified, including one previously uncharacterized site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr0604817 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Istanbul, Turkey.
Theranostic agents hold great promise for personalized medicine by combining diagnostic and therapeutic functions. Herein, two novel multifunctional theranostic glyconanoprobes targeting breast cancer were engineered for synergistic dual chemo-gene therapy and triple chemo-gene-photothermal therapy. Upconversion nanoparticles (UCNPs) were prepared and coated with a Dox-loaded glycopeptide polymer (P-Dox) to form UCNP@P-Dox for improving stability.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:
Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:
Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Science, Xihua University, Chengdu, 610039, People's Republic of China.
A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!