In most masking experiments, target signals and sound intended to mask are located in the same position. Spatial release from masking (SRM) occurs when signals and maskers are spatially separated, resulting in detection improvement relative to when they are spatially co-located. In this study, SRM was investigated in a harbor seal, who naturally lacks pinnae, and California sea lion, who possesses reduced pinnae. Subjects had to detect aerial tones at 1, 8, and 16 kHz in the presence of octave bands of white noise centered at the tone frequency. While the masker occurred in front of the subject (0 degree), the tone occurred at 0, 45, or 90 degrees in the horizontal plane. Unmasked thresholds were also measured at these angles to determine sensitivity differences based on source azimuth. Compared to when signal and masker where co-located, masked thresholds were lower by as much as 19 and 12 dB in the harbor seal and sea lion, respectively, when signal and masker were separated. Masked threshold differences of the harbor seal were larger than those previously measured under water. Performance was consistent with some measurements collected on terrestrial animals but differences between subjects at the highest frequency likely reflect variations in pinna anatomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.2404929 | DOI Listing |
Sci Total Environ
January 2025
North Slope Borough, Department of Wildlife Management, Utqiaġvik, AK 99723, USA; Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99708, USA.
Ringed (Pusa hispida), bearded (Erignathus barbatus), spotted (Phoca largha), and ribbon (Histriophoca fasciata) seals are ice-associated seals that are important subsistence resources for coastal Alaska Native people. These seals are also mid- to upper trophic level Arctic predators and primary prey of polar bears (Ursus maritimus). We analyzed concentrations of 19 trace elements in seal liver, kidney, muscle, and blubber, including arsenic, cadmium, lead, mercury, and vanadium due to their potential toxicity.
View Article and Find Full Text PDFJ Zoo Wildl Med
December 2024
Alaska SeaLife Center, Seward, AK 99664.
Recent unusual mortality events involving skin pathology in bearded (), ringed (), and spotted seals () in Alaska highlight the potential sensitivity of ice-associated species to the complex effects of climate change. The regulation of thyroid hormones, cortisol, and vitamin A have been shown to play essential roles in skin health and seasonal molt in some pinnipeds. Unfortunately, the lack of available reference data for healthy Alaskan ice seals has prevented the adequate evaluation of these factors in cases associated with mortality events.
View Article and Find Full Text PDFFront Microbiol
December 2024
IFREMER, ODE-DYNECO-PELAGOS, Plouzané, France.
Introduction: Seals, protected wild marine mammals, are widely found in waters around the world. However, rising concerns about their increasing numbers in some areas have led to potential worries regarding microbiological contamination of coastal areas by their feces, which could impact bathing and shellfish-harvesting activities. To the best of our knowledge, no study has been conducted on the bacterial and RNA viral communities present in the feces of both grey and harbor seals, which are the two main seal species observed in mainland France and overseas.
View Article and Find Full Text PDFAm J Vet Res
December 2024
Vancouver Aquarium, Vancouver, BC, Canada.
Objective: To describe the outcome of megaesophagus in harbor seal pups undergoing rehabilitation from January 2021 to December 2023.
Methods: 5 harbor seal (Phoca vitulina richardii) pups, 2 males and 3 females, were included in the study. All 5 cases had no clinical signs associated with megaesophagus on initial presentation to the rehabilitation facility.
GigaByte
November 2024
Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, 60438, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!