The University of Massachusetts Medical School maintains 3 separate research colonies of Xenopus laevis, with each colony located in a separate building on campus. After a 5-wk in-house quarantine period, 34 wild-caught X. laevis were transferred into one of the existing colonies. As a result, this colony grew from 51 to 85 frogs. All animals were housed in a recirculating frog housing system. During the first 2 mo, 6 frogs died suddenly, and health reports were generated for another 10 frogs in this colony. The majority of health reports were written in response to acute coelomic distention. These patterns continued until, after 1 y, only 25 of the original 85 animals remained. Necropsies performed showed large accumulations of serosanguinous fluid in the subcutaneous space or body cavity. Granulomatous inflammatory lesions with acid-fast bacilli were generally present in the liver, lung, or spleen. Culture of affected tissues grew Mycobacterium sp. within 40 d. Polymerase chain reaction analysis confirmed the isolated organism to be the same species of Mycobacterium (provisionally named M. liflandii) recently reported by 2 other groups. However, previous clinical publications suggested that this bacterium originated only from X. tropicalis. The cases we present highlight the rapidly lethal effects of M. liflandii in a colony of wild-caught X. laevis and illustrate the need to dedicate further attention to this emerging Xenopus disease.

Download full-text PDF

Source

Publication Analysis

Top Keywords

xenopus laevis
8
laevis colony
8
wild-caught laevis
8
health reports
8
colony
5
newly identified
4
identified mycobacterium
4
mycobacterium species
4
species xenopus
4
laevis
4

Similar Publications

Progesterone induces meiosis through two obligate co-receptors with PLA2 activity.

Elife

January 2025

Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.

The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality.

View Article and Find Full Text PDF

Animal models of kabuki syndrome and their applicability to novel drug discovery.

Expert Opin Drug Discov

January 2025

Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.

View Article and Find Full Text PDF

The amphibian metamorphosis assay (AMA) is an in vivo screen to assess potential interactions of chemicals with the amphibian thyroid system. Tadpoles are exposed for 21-days, then assessed for development and growth after 7 days and at test termination. This paper presents data from studies performed to satisfy test orders from the US EPA's Endocrine Disruptor Screening Program.

View Article and Find Full Text PDF

The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!