A cell-free protein synthesis system is a powerful tool with which unnatural amino acids can be introduced into polypeptide chains. Here, the authors describe unnatural amino acid probing in a wheat germ cell-free translation system as a method for detecting the structural changes that occur in a cofactor binding protein on a conversion of the protein from an apo-form to a holo-form. The authors selected the FMN-binding protein from Desulfovibrio vulgaris as a model protein. The apo-form of the protein was synthesized efficiently in the absence of FMN. The purified apo-form could be correctly converted to the holo-form. Thus, the system could synthesize the active apo-form. Gel filtration chromatography, analytical ultracentrifugation, and circular dichroism-spectra studies suggested that the FMN-binding site of the apo-form is open as compared with the holo-form. To confirm this idea, the unnatural amino acid probing was performed by incorporating 3-azido-L-tyrosine at the Tyr35 residue in the FMN-binding site. The authors optimized three steps in their system. The introduced 3-azido-L-tyrosine residue was subjected to specific chemical modification by a fluorescein-triarylphosphine derivative. The initial velocity of the apo-form reaction was 20 fold faster than that of the holo-form, demonstrating that the Tyr35 residue in the apo-form is open to solvent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.21341 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!