Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Binding of Na+ and Ca2+ ions to the large cytosolic loop of the Na+/Ca2+ exchanger (NCX) regulates its ion transport across the plasma membrane. We determined the solution structures of two Ca2+-binding domains (CBD1 and CBD2) that, together with an alpha-catenin-like domain (CLD) form the regulatory exchanger loop. CBD1 and CBD2 constitute a novel Ca2+-binding motif and are very similar in the Ca2+-bound state. Strikingly, in the absence of Ca2+ the upper half of CBD1 unfolds while CBD2 maintains its structural integrity. Together with a sevenfold higher affinity for Ca2+ this suggests that CBD1 is the primary Ca2+ sensor. Specific point mutations in either domain largely allow the interchange of their functionality and uncover the mechanism underlying Ca2+ sensing in NCX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1387.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!