Background: Heterotrimeric G proteins take part in membrane-mediated cell signalling and have a role in hormonal regulation. This study clarifies the expression and localization of the G protein subunit G alpha(i2) in the human endometrium and Fallopian tube and changes in G alpha(i2) expression in human endometrium during the menstrual cycle.

Methods: The expression of G alpha(i2) was identified by Polymerase chain reaction (PCR), and localization confirmed by immunostaining. Cyclic changes in G alpha(i2) expression during the menstrual cycle were evaluated by quantitative real-time PCR.

Results: We found G alpha(i2) to be expressed in human endometrium, Fallopian tube tissue and in primary cultures of Fallopian tube epithelial cells. Our studies revealed enriched localization of G alpha(i2) in Fallopian tube cilia and in endometrial glands. We showed that G alpha(i2) expression in human endometrium changes significantly during the menstrual cycle, with a higher level in the secretory versus proliferative and menstrual phases (P < 0.05).

Conclusions: G alpha(i2) is specifically localized in human Fallopian tube epithelial cells, particularly in the cilia, and is likely to have a cilia-specific role in reproduction. Significantly variable expression of G alpha(i2) during the menstrual cycle suggests G alpha(i2) might be under hormonal regulation in the female reproductive tract in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/dem022DOI Listing

Publication Analysis

Top Keywords

human endometrium
20
fallopian tube
20
expression alphai2
12
endometrium fallopian
12
alphai2 expression
12
menstrual cycle
12
alphai2
11
variable expression
8
alphai2 human
8
hormonal regulation
8

Similar Publications

Background: Management of recurrent endometrial carcinoma (EC) represents a challenge. Although a complete resection of visible disease at secondary surgery (R0) is recommended, the impact of R0 on survival outcomes is unclear and pooled data are lacking.

Objective: To quantitatively assess the impact of R0 on survival outcomes in women with EC recurrence.

View Article and Find Full Text PDF

Background: Both intramural myomas and thin endometrium exert a detrimental influence on the outcomes of assisted reproductive technology (ART). The downregulation of gonadotropin releasing hormone agonists (GnRH-a) is regarded as an effective approach to reducing the size of intramural fibroids and enhancing endometrial receptivity. Consequently, we conducted this study to assess whether the GnRH-a combined with hormone replacement therapy (GnRH-a-HRT) can improve reproductive outcomes in frozen embryo transfer cycles for patients with a thin endometrium (≤7 mm) and intramural fibroids.

View Article and Find Full Text PDF

Background: Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition.

Methods: This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures.

View Article and Find Full Text PDF

This is a protocol for a Cochrane Review (diagnostic). The objectives are as follows: To assess the diagnostic accuracy of endometrial sampling with histology in the diagnosis of endometrial cancer in women with postmenopausal bleeding and thickened endometrium on ultrasound. Diagnosis will be verified by the reference standards, hysteroscopy with histology, obtained by targeted (such as grasp biopsy of the endometrium or resection of focal pathology) or global sampling (with dilation and curettage), and histology of hysterectomy specimens.

View Article and Find Full Text PDF

Association of Arachidonic Acid Metabolism Related Genes With Endometrial Immune Microenvironment and Oxidative Stress in Coupes With Recurrent Implantation Failure.

Am J Reprod Immunol

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China.

Background: Alterations in lipid metabolism were reported to impact human fertility; however, there is limited evidence on the association of lipid metabolism with embryo implantation as well as the etiology of recurrent implantation failure (RIF), especially regarding arachidonic acid metabolism.

Methods: Experimental verification research (16 RIF patients and 30 control patients) based on GEO database analysis (24 RIF patients and 24 control patients). The methods in bioinformatics included differential gene screening, functional enrichment analysis, protein-protein interaction network, cluster analysis, weighted gene co-expression network analysis, and so forth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!