The C terminus of the beta(2)-adrenoceptor (AR) interacts with G protein-coupled receptor kinases and arrestins in an agonist-dependent manner, suggesting that conformational changes induced by ligands in the transmembrane domains are transmitted to the C terminus. We used fluorescence resonance energy transfer (FRET) to examine ligand-induced structural changes in the distance between two positions on the beta(2)-AR C terminus and cysteine 265 (Cys-265) at the cytoplasmic end of transmembrane domain 6. The donor fluorophore FlAsH (Fluorescein Arsenical Helix binder) was attached to a CCPGCC motif introduced at position 351-356 in the proximal C terminus or at the distal C terminus. An acceptor fluorophore, Alexa Fluor 568, was attached to Cys-265. FRET analyses revealed that the average distances between Cys-265 and the proximal and distal FlAsH sites were 57 and 62A(,) respectively. These relatively large distances suggest that the C terminus is in an extended, relatively unstructured conformation. Nevertheless, we observed ligand-specific changes in FRET. All ligands induced an increase in FRET between the proximal C-terminal FlAsH site and Cys-265. Ligands that have been shown to induce arrestin-dependent ERK activation, including the catecholamine agonists and the inverse agonist ICI118551, led to a decrease in FRET between the distal FlAsH site and Cys-265, whereas other ligands had no effect or induced a small increase in FRET. Taken together the results provide new insight into the structure of the C terminus of the beta(2)-AR as well as ligand-induced conformational changes that may be relevant to arrestin-dependent regulation and signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M611904200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!