Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats.

Pain

Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan Department of Anesthesiology, Tri-service General Hospital and National Defense Medical Center, 325 Chenggung Road, Section 2, Neihu 114, Taipei, Taiwan Department of Medical Research and Anesthesiology, Chi-Mei Medical Center, Yung-Kang City, Tainan, Taiwan Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.

Published: June 2007

The present study was undertaken to examine the effect of amitriptyline on the antinociceptive effect of morphine and its underlying mechanisms in regulating glutamate transporters trafficking in morphine-tolerant rats. Long-term morphine infusion induced antinociceptive tolerance and down-regulation of glutamate transporters (GTs), GLAST, GLT-1, and EAAC1, expression in the rat spinal cord dorsal horn. Acute amitriptyline treatment potentiated morphine's antinociceptive effect, with a 5.3-fold leftward shift of morphine's dose-response curve in morphine-tolerant rats, and this was associated with GLAST and GLT-1 trafficking onto the cell surface. Similar to our previous studies, morphine challenge (10 microg/10 microl, i.t.) significant by increased the excitatory amino acids (EAAs) aspartate and glutamate level in the CSF dialysates of morphine-tolerant rats. Acute amitriptyline treatment not only suppressed this morphine-evoked EAA release, but further reduced the EAA concentration than baseline level. Furthermore, long-term morphine infusion up-regulated PKA and PKC protein expression in the spinal cord dorsal horn, while amitriptyline inhibited the increase in expression of phospho-PKA, PKCalpha, PKCbetaII, and PKCgamma. In morphine-tolerant rats, acute treatment with PKA inhibitor H89 and PKC inhibitor Gö6805 attenuated morphine tolerance and the morphine-induced CSF glutamate and aspartate elevation, and induced trafficking of GLAST and GLT-1 from cytosol onto the cell surface. These results show that acute amitriptyline treatment preserved morphine's antinociceptive effect in morphine-tolerant rats; the mechanisms may be involved in inhibition of phospho-PKA and PKC expression, and thus inducing the GLAST and GLT-1 trafficking onto glial cell surface which enhances the EAA uptake from the synaptic cleft and reduces EAA concentration in the spinal CSF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pain.2007.01.031DOI Listing

Publication Analysis

Top Keywords

morphine-tolerant rats
24
glast glt-1
20
morphine's antinociceptive
12
glt-1 trafficking
12
acute amitriptyline
12
amitriptyline treatment
12
cell surface
12
regulating glutamate
8
excitatory amino
8
amino acids
8

Similar Publications

C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats.

CNS Neurosci Ther

January 2025

Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aims: Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance.

View Article and Find Full Text PDF

While low-dose cannabinoid 2 (CB2) receptor agonists attenuate morphine tolerance in cancer pain models, chemokine ligand 12 (CXCL12)/chemokine receptor 4 (CXCR4) expression induces morphine tolerance. Whether CB2 receptor agonists attenuate morphine tolerance by modulating CXCL12/CXCR4 signaling or whether CXCL12/CXCR4 signaling affects the mu opioid receptor (MOR) in the development of morphine tolerance in cancer pain remains unclear. In this study, we investigated the attenuation of morphine tolerance by a non-analgesic dose of the CB2 receptor agonist AM1241, focusing specifically on the modulation of CXCL12/CXCR4 signaling and its effect on the MOR.

View Article and Find Full Text PDF

First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP.

View Article and Find Full Text PDF

Inhibition of spinal BRD4 alleviates pyroptosis and M1 microglia polarization via STING-IRF3 pathway in morphine-tolerant rats.

Eur J Pharmacol

April 2024

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. Electronic address:

Background: Morphine tolerance has been a challenging medical issue. Neuroinflammation is considered as a critical mechanism for the development of morphine tolerance. Bromodomain-containing protein 4 (BRD4), a key regulator in cell damage and inflammation, participates in the development of chronic pain.

View Article and Find Full Text PDF

Morphine tolerance (MT) is currently a challenging issue related to intractable pain treatment. Studies have shown that reactive oxygen species (ROSs) derived from NADPH oxidase (NOX) and produced in response to endoplasmic reticulum (ER) stress participate in MT development. However, which NOX subtype initiates ER stress during MT development is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!