Estradiol replacement increases the low-density lipoprotein receptor related protein (LRP) in the mouse brain.

Neurosci Lett

Center for Alzheimer's Disease and Related Disorders, Department of Neurology, Southern Illinois University School of Medicine, P.O. Box 19643, Springfield, IL 62794-9643, USA.

Published: April 2007

Numerous epidemiology studies have shown protective effects of hormone therapy (HT) on chronic neurological diseases. We have proposed that some of the neuroprotective effects of estrogen are mediated by apolipoprotein E (apoE). Polymorphisms of receptors for apoE modify the risk for dementia. To our knowledge, no reports exist showing CNS effects of estrogen replacement on members of the low-density lipoprotein receptor family. The current study focused on the effect of estradiol-17beta (E2) replacement on protein expression of two members of the receptor family, the low-density lipoprotein receptor (LDL-r) and low-density lipoprotein receptor related protein (LRP) in ovariectomized mice. Five days of E2 replacement significantly increased LRP expression in the hippocampus, olfactory bulb and neocortex but not in cerebellum. In contrast, E2 treatment decreased LDL-r protein expression in olfactory bulb. HT modification of both apoE and LRP could have wide-spread effects on cellular function given LRP's manifold signaling functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2007.02.030DOI Listing

Publication Analysis

Top Keywords

low-density lipoprotein
16
lipoprotein receptor
16
receptor protein
8
protein lrp
8
effects estrogen
8
receptor family
8
protein expression
8
olfactory bulb
8
receptor
5
estradiol replacement
4

Similar Publications

The Citri Reticulatae Pericarpium (CRP), is the aged peel of Citrus fruit, which contains phenols, flavonoids, and polysaccharides. This study aims to investigate dietary CRP supplementation on the growth performance, serum biochemical indices, meat quality, intestinal morphology, microbiota, and metabolite of yellow-feathered broilers. A total of 240 yellow-feathered broilers (1.

View Article and Find Full Text PDF

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Background: Tissue damage by viral hepatitis is a major cause of morbidity and mortality worldwide. Oxidation reactions and reactive oxygen species (ROS) transform proteins and lipids in plasma low-density lipoproteins (LDL) into the abnormal oxidized LDL (ox-LDL). Hepatitis C virus (HCV) infection induces oxidative/nitrosative stress from multiple sources, including the inducible nitric oxide synthase (iNOS), the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases (NOX enzymes), and inflammation.

View Article and Find Full Text PDF

Background: Diabetic population are at an increased risk of developing dyslipidemia and other cardiovascular complications. The study was performed to evaluate the lipid profile parameter in the diabetic population among the ethnic tribal community of Tripura and calculate the risk of cardiovascular events. The tribal community was chosen as the study population because their lifestyle, food habits, culture and housing practices are different from people living on the plains.

View Article and Find Full Text PDF

Background: As a novel oral anti-hyperglycemic agent, sodium-glucose cotransporter 2 inhibitors (SGLT2-i) have been demonstrated to improve cardiovascular outcomes in acute myocardial infarction (AMI) patients with type 2 diabetes mellitus (T2DM). However, the mechanism responsible for the beneficial effects remains unclear. Recently, extensive studies have demonstrated a close relationship between elevated fasting triglyceride-glucose (TyG) index and the risk of AMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!