LV-peptides mimic the in vitro fusogenicity of synthetic fusion protein transmembrane domains. The original versions of these peptides consist of a variable hydrophobic core (containing leucine and/or valine residues (LV)) that is flanked by invariant lysine triplets at both termini. Previously, peptide fusogenicity was correlated with the structural plasticity of their hydrophobic cores. Here, we examined the functional importance of positively charged flanking residues. To this end, we determined the fusogenicities of peptide variants that contain terminal His and/or Lys triplets. Interestingly, liposome fusion by peptides with His triplets was triggered by acidic pH. The pH dependence of fusion is reflected by a sigmoidal titration curve whose midpoint is close to the pKa value of histidine. Thus, only peptides with positively charged residues at both termini are fusogenic. The previously established dependence of fusogenicity on the sequence of the hydrophobic peptide core of Lys-flanked LV-peptides was preserved with the His-flanked versions at low pH. We propose that the structural flexibility of the core region as well as positive terminal charges are required for LV-peptide function in lipid mixing. In a potential practical application, the pH-dependent LV-peptides might prove to be useful in the lipofection of eukaryotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi602539n | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFScientifica (Cairo)
January 2025
Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.
View Article and Find Full Text PDFDevice
October 2024
Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
Naloxone can effectively rescue victims from opioid overdose, but less than 5% survive due to delayed or absent first responder intervention. Current overdose reversal systems face key limitations, including low user adherence, false positive detection, and slow antidote delivery. Here, we describe a subcutaneously implanted robotic first responder to overcome these challenges.
View Article and Find Full Text PDFJ Immunotoxicol
December 2024
Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA.
Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, it was shown that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca mobilization, microtubule polymerization, and degranulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!