Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2007-969366 | DOI Listing |
Chem Pharm Bull (Tokyo)
March 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
Six flavonoids (1-6), including 3 previously undescribed compounds (1-3), were isolated from the dried roots and stem skins of Daphne giraldii Nitsche. The strategy of LC-tandem mass spectrometry-based Global Natural Products Social Molecular Networking (GNPS) molecular network technology and NMR-based Small Molecule Accurate Recognition Technology (SMART) technology facilitated the precise separation of isopentenyl flavonoids in D. giraldii.
View Article and Find Full Text PDFPhytochemistry
June 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China. Electronic address:
Isopentenyl flavonoids were isolated from Daphne giraldii Nitsche and their pharmacological activity was further studied to enrich its chemical composition. Seventeen isopentenyl flavonoids (1a/1b-3a/3b and 4-14), including thirteen undescribed compounds (1a/1b-3a/3b and 4-10), were obtained from D. giraldii under the guidance of HSQC-based DeepSAT.
View Article and Find Full Text PDFPhytochemistry
May 2025
Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China. Electronic address:
Daphnane diterpenoids, as one of the representative types of diterpenoid compounds with rich structural diversity and significant biological activities, have an uncommon 5/7/6 tricyclic skeleton mainly found in species of Thymelaeaceae and Euphorbiaceae families. Due to the unique peculiarity of the framework and remarkable pharmacological activities, over the past three decades, novel structures have been continuously discovered and more structural subtypes have been derived. However, there is always a lack of a unified and convincing structural classification strategy for the summary of daphnane diterpenoids, which affects the in-depth and systematic research of pharmaceutical chemists and pharmacologists.
View Article and Find Full Text PDFBiomed Res Int
December 2024
Department of Biochemistry & Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh.
Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.
View Article and Find Full Text PDFPLoS One
December 2024
Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha, China.
Agarwood is a precious resinous heartwood highly valued for its cultural, religious, and medicinal significance. With the increasing market demand, natural agarwood resources are rapidly depleting, making the development of effective artificial induction methods for agarwood highly significant. This study aims to explore the feasibility of using callus tissue to assess the ability of fungi to induce agarwood formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!