PET scanners are an important component in functional brain imaging devices. Several PET scanners have been developed during the last two decades for brain research studies. We are developing a high-performance brain PET scanner, jPET-D4. This scanner is designed to achieve not only high spatial resolution but also high sensitivity using four-layered depth-of-interaction (DOI) detectors. The scanner has five block detector rings with the ring diameter of 390 mm and each block detector ring consists of 24 DOI detectors. In previous work, we have demonstrated that 3 mm FWHM uniform spatial resolution within the field-of-view could be realized. In this paper, we describe the jPET-D4 system and evaluate its performance. The average energy resolution for 120 DOI detectors is optimized to 16 % +/- 1.0 %. The scatter fraction for this system is 40 % with an energy window of 400-600 keV. The sensitivity for the point source is 102 kcps/MBq (10.2 %) with a 400 keV LLD. Maximum noise equivalent count rate (NECR) is 154 kcps at 11 kBq/ml with a 10 ns coincidence time window. We evaluated scatter fraction and NECR following procedures based on NEMA NU2-1994. These first evaluation measurements indicate the jPET-D4 has good performance.

Download full-text PDF

Source

Publication Analysis

Top Keywords

doi detectors
12
pet scanners
8
spatial resolution
8
block detector
8
scatter fraction
8
design inital
4
inital evaluation
4
evaluation 4-layer
4
4-layer doi-pet
4
doi-pet system
4

Similar Publications

Time resolution is crucial in positron emission tomography (PET) to enhance the signal-to-noise ratio and image quality. Moreover, high sensitivity requires long scintillators, which can cause distortions in the reconstructed images due to parallax effects. This study evaluates the performance of a time-of-flight (TOF)-PET module that makes use of a single-side readout of a 4x4 3.

View Article and Find Full Text PDF

High spatial resolution PET detectors based on 10 mm × 10 mm linearly-graded SiPMs and 0.5 mm pitch LYSO arrays.

Phys Med Biol

December 2024

Department of Biomedical Engineering, University of California Davis, 451 East Health Science Drive, Davis, California, 95616, UNITED STATES.

Position-sensitive silicon photomultipliers (PS-SiPMs) are promising photodetectors for ultra-high spatial resolution small-animal positron emission tomography (PET) scanners. This paper evaluated the performance of the latest generation of linearly-graded SiPMs (LG-SiPMs), a type of PS-SiPM, for ultra-high spatial resolution PET applications using LYSO arrays from two vendors. Approach: Two dual-ended readout detectors were developed by coupling LG-SiPMs to both ends of the two LYSO arrays.

View Article and Find Full Text PDF

Foreground separation knowledge distillation for object detection.

PeerJ Comput Sci

November 2024

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu Province, China.

In recent years, deep learning models have become predominant methods for computer vision tasks, but the large computation and storage requirements of many models make them challenging to deploy on devices with limited resources. Knowledge distillation (KD) is a widely used approach for model compression. However, when applied in the object detection problems, the existing KD methods either directly applies the feature map or simply separate the foreground from the background by using a binary mask, aligning the attention between the teacher and the student models.

View Article and Find Full Text PDF
Article Synopsis
  • An organ-specific PET scanner can achieve similar sensitivity and higher spatial resolution than whole-body PET scanners by using fewer detectors, which helps to lower costs and improve image clarity.
  • The development focuses on creating high-resolution depth encoding PET detectors with better timing and fewer signal processing channels, allowing for affordable scanners tailored for specific organs.
  • The study employs a combination of silicon photomultiplier (SiPM) arrays and lutetium yttrium orthosilicate (LYSO) arrays to optimize crystal identification, measure interaction depth, and enhance coincidence timing resolutions for improved imaging accuracy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!