Objective: To explore the effect and possible mechanism of catechin microcapsulation on the repair of DNA damage in glumreular mesangial cells (GMCs) induced by H2O2.
Methods: According to H2O2 concentration, the experiment GMCs were divided into 6 groups: a control group, 50 micromol/L group, 100 micromol/L group, 150 micromol/L group, 200 micromol/L group and 250 micromol/L group. Each group was sub-divided into 3 groups: 6 h group, 12 h group and 24 h group, in order to determining the optimum dose and the best time of detecting the DNA damage in GMCs. The cultured cells were divided into 8 groups as follows: the NS control group, the H2O2 group, the catechin groups (the final concentrations were 10.0, 15.0, and 20.0 mg/L respectively) and the various catechin microcapsulation groups (the final concentrations were 10.0, 15.0, and 20.0 mg/L respectively). At the end of the experiment, hydroxy radical (OH), malonydialdehyde (MDA) and total superoxide dismutase (tSOD) concentration of supernadant in GMCs were determined by biochemistry assay, the repair of DNA damage in GMCs were detected by single cell gel electrophoresis assay.
Results: (1)At 6th h, H2O2 of 100 micromoL/L could cause the DNA damage of GMCs, and H2O2 of 150 micromol/L could result in DNA damage significantly. (2) No difference was found in the comet span of GMCs DNA in the catechin group and catechin microcapsulation group of different concentrations, while the DNA comet tail-long in the catechin microcapsulation group was shorter than that of the catechin group(all P(s)<0.05), and the fluorescence intensity of tail in the catechin microcapsulation group was lower than that of the catechin group(all P(s)<0.01). (3)When the concentration of catechin was 10.0 mg/L, no statistical significance was obtained in the concentration of dOH-, MDA and tSOD between the catechin microcapsulation group and the catechin group; while dOH- and MDA concentrations were lower, and the tSOD was higher in the catechin microcapsulation group than that in the catechin group when the concentration of catechin was 15.0 mg/L and 20.0 mg/L(all P(s)<0.05).
Conclusion: Catechin microcapsulation can enhance the GMCs ability of repairing DNA damage,which may be due to elevating the capacity of its anti-oxidation by catechin microcapsulation.
Download full-text PDF |
Source |
---|
Eur J Med Res
January 2025
Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles, but the underlying mechanisms remain largely elusive. Here, we show that NLRP7 knockout affects the genetic stability, resulting in increased DNA damage in both human embryonic stem cells and blastoids, making embryonic cells in blastoids more susceptible to apoptosis.
View Article and Find Full Text PDFGeroscience
January 2025
Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.
Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!