We have developed a fluid-mechanical model of a eucaryotic axoneme that couples the internal force generation of dynein molecular motors, the passive elastic mechanics of microtubules, and forces due to nexin links with a surrounding incompressible fluid. This model has been used to examine both ciliary beating and flagellar motility. In this article, we show preliminary simulation results for sperm motility in both viscous and viscoelastic fluids, as well as multiciliary interaction with a mucus layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1389.016 | DOI Listing |
Nature
January 2025
Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii, structures of mammalian axonemes are incomplete. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, we propose a label-free morphology imaging platform compatible with the small airway-on-a-chip system.
View Article and Find Full Text PDFAirway multiciliated cells (MCs) maintain respiratory health by clearing mucus and trapped particles through the beating of motile cilia. While it is known that ciliary lengths decrease along the proximal-distal (P-D) axis of the tracheobronchial tree, how this is regulated is unclear. Here, we demonstrate that canonical Notch signaling in MCs plays a critical role in stabilizing ciliary length.
View Article and Find Full Text PDFBiol Pharm Bull
December 2024
Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University.
Mucociliary clearance (MCC) is a host defense mechanism of the respiratory system. Beating cilia plays a crucial role in the MCC process and ciliary beat frequency (CBF) is activated by several factors including elevations of the intracellular cAMP concentration ([cAMP]), intracellular Ca concentration ([Ca]), and intracellular pH (pH). In this study, we investigated whether an artichoke-extracted component cynaropicrin could be a beneficial compound for improving MCC.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada.
Motile cilia are unique organelles with the ability to autonomously move. Force generated by beating cilia propels cells and moves fluids. The ciliary skeleton is made of peripheral doublet microtubules and a central pair (CP) with a distinct structure at the tip.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!