Kit ligand (Kitl), the ligand for the Kit receptor tyrosine kinase, plays important roles in hematopoiesis, gametogenesis and melanogenesis. Kitl is synthesized as a membrane-anchored precursor that can be processed to produce the soluble growth factor. Here, we evaluated the role of ADAM (a disintegrin and metalloprotease) metalloproteases in ectodomain shedding of Kitl. We found that both ADAM17 and ADAM19 affect Kitl1 shedding, albeit in different ways. Overexpression of ADAM19 resulted in decreased levels of Endo-H-resistant mature Kitl1, thereby reducing the amount of Kitl that is shed from cells following stimulation with phorbol esters. ADAM17 was identified as the major phorbol-ester-stimulated sheddase of Kitl1, whereas ADAMs 8, 9, 10, 12 and 15 were not required for this process. ADAM17 also emerged as the major constitutive and phorbol-ester-stimulated sheddase of Kitl2 in mouse embryonic fibroblasts. Mutagenesis of the juxtamembrane domain of Kitl2 showed no stringent sequence requirement for cleavage by ADAM17, although two nonadjacent stretches of four amino acid residues were identified that are required for Kitl2 shedding. Taken together, this study identifies a novel sheddase, ADAM17, for Kitl1 and Kitl2, and demonstrates that ADAM19 can reduce ADAM17-dependent phorbol-ester-stimulated Kitl1 ectodomain shedding.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.03403DOI Listing

Publication Analysis

Top Keywords

ectodomain shedding
12
kit ligand
8
phorbol-ester-stimulated sheddase
8
kitl1
6
adam17
6
shedding
5
adams distinct
4
distinct influences
4
influences kit
4
ligand processing
4

Similar Publications

Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape.

Matrix Biol

January 2025

Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany. Electronic address:

Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion.

View Article and Find Full Text PDF

Updates on Inflammatory Molecular Pathways Mediated by ADAM17 in Autoimmunity.

Cells

December 2024

Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy.

ADAM17 is a member of the disintegrin and metalloproteinase (ADAM) family of transmembrane proteases with immunoregulatory activity in multiple signaling pathways. The functional ADAM17 is involved in the shedding of the ectodomain characterizing many substrates belonging to growth factors, cytokines, receptors, and adhesion molecules. The ADAM17-dependent pathways are known to be crucial in tumor development and progression and in the modulation of many pathological and physiological processes.

View Article and Find Full Text PDF

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Editorial: Methods and applications in molecular psychiatry: 2023.

Front Psychiatry

December 2024

Department of Psychiatry and Psychotherapy II, Bezirkskrankenhaus Günzburg, University of Ulm, Ulm, Germany.

View Article and Find Full Text PDF

The low-density lipoprotein receptor: Emerging post-transcriptional regulatory mechanisms.

Atherosclerosis

December 2024

Department of Medical Biochemistry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam UMC, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands. Electronic address:

Cholesterol is a vital component of cellular membranes and is an essential molecule in mammalian physiology. Yet dysregulation of hepatic cholesterol metabolism and an increase in plasma cholesterol is linked to development of atherosclerotic cardiovascular disease. Maintaining tight regulation of cholesterol homeostasis is therefore essential, elegantly highlighted by the control of hepatic low-density lipoprotein receptor (LDLR) abundance and associated lipoprotein clearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!