We investigate the propagation of neural activity along one-dimensional rat hippocampal cultures patterned in lines over multielectrode arrays. Activity occurs spontaneously or is evoked by local electrical or chemical stimuli, with different resulting propagation velocities and firing rate amplitudes. A variability of an order of magnitude in velocity and amplitude is observed in spontaneous activity. A linear relation between velocity and amplitude is identified. We define a measure for neuron activation synchrony and find that it correlates with front velocity and is higher for electrically evoked fronts. We present a model that explains the linear relation between amplitude and velocity, which highlights the role of synchrony. The relation to current models for signal propagation in neural media is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00608.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!