We present a physical model to describe iontophoresis time recordings. The model is a combination of monodimensional material diffusion and decay, probably due to transport by blood flow. It has four adjustable parameters, the diffusion coefficient, the decay constant, the height of the response, and the shot saturation constant, a parameter representing the relative importance of subsequent shots (in case of saturation). We test the model with measurements of blood perfusion in the capillary bed of the fingers of women who recently had preeclampsia and in women with a history of normal pregnancy. From the fits to the measurements, we conclude that the model provides a useful physical description of the iontophoresis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.2671053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!