Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report the synthesis of a series of benzene sulfonamides containing triazole-O-glycoside tails for evaluation as carbonic anhydrase (CA) inhibitors. These glycoconjugates were synthesized by the 1,3-dipolar cycloaddition reaction of 4-azidobenzenesulfonamide with O-propynyl glycosides. Compounds were assessed for their ability to inhibit the enzymatic activity of the physiologically dominant isozymes hCA I and II and the tumor-associated isozyme hCA IX (h = human). Against hCA I these compounds were either micromolar or low-nanomolar inhibitors, while against hCA II and IX inhibition in the range of 6.8-53 and 9.7-107 nM, respectively, was observed. The most potent inhibitor against hCA IX was the galactose derivative 8 (Ki = 9.7 nM); this is so far the most potent glycoconjugate inhibitor reported for the tumor-associated hCA IX. These carbohydrate-tethered sulfonamides may prove interesting lead candidates to target tumor-associated CA isozymes, wherein the CA domain is located extracellularly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm061320h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!