Background: For inhalation as a mainstay of asthma therapy, the correct inhalation technique is of utmost importance. This comprises not only the correct handling of the device but also specific device-dependent requirements concerning the inhalation manoeuvre itself.
Methods: We examined whether totally different inhalation manoeuvres can be educated in parallel in asthmatic children. As target manoeuvres we defined: 1) an inhalation as fast as possible (peak inspiratory flow >or= 60 l/min) with high acceleration in the starting phase as it is normally required for dry powder inhalers. 2) A constant inhalation at a flow between 40 and 90 l/min with a long duration as it is regarded to be optimal for propellant driven systems. As models for dry powder inhalers the Diskus (Accuhaler, a medium resistance device) and the Turbuhaler (high resistance) were chosen. As an example of a propellant-driven we used the Autohaler (breath-actuated MDI). A total of 52 outpatients (age 4 to 14 years) with asthma were educated two times. We measured peak inspiratory flow (PIF), duration of inspiration with inspiratory flow >or= 30 l/min (Ti30), inspiratory volume (Vol) and acceleration of inspiratory flow (mPIF) through the devices in random order before and after each training session. Measurements were performed using the inhalation manager, a computer based spirometry system, which allows recording of inspiratory manoeuvres through Placebo inhalers by means of a pneumotachometer. Results are immediately visualized (optical feedback) and evaluated.
Results: Training children simultaneously with different inhalation systems appeared to be difficult. Only for the DPIs a significant increase of children inhaling in the pre-given target area could be reached. With Diskus, the rate of correct manoeuvres increased from initially 57.7 % to 88.5 % after training and with Turbohaler from 32.7 % to 65.4 %, respectively. With MDI, this rate increased only from 32.7 % to 42.3 %. This indicates that a high inspiratory flow may be easier to be learned than a constant slow inhalation, at least when training is done simultaneously in children.
Conclusions: Thus, training of the different inhalation manoeuvres for DPI and MDI should be performed separately. When prescribing inhaled drugs for reliever treatment and maintenance therapy for any individual patient, prescribers should select inhalation devices, which can be used in a similar way without clinical disadvantage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2006-955008 | DOI Listing |
Crit Care Sci
January 2025
Anaesthesiology and Critical Care, All India Institute of Medical Sciences - Jodhpur, India.
Objective: Although the efficacy of high-flow nasal oxygen therapy in delaying or avoiding intubation in patients with hypoxemic respiratory failure has been studied, its potential for facilitating early weaning from invasive mechanical ventilation remains unexplored.
Methods: In this randomized controlled trial, 80 adults with acute hypoxemic respiratory failure requiring invasive mechanical ventilation for > 48 hours were enrolled and divided into two groups: conventional weaning and early weaning via high-flow nasal oxygen. In the conventional weaning group, the spontaneous breathing trial was performed after the PaO2/FiO2 ratio was ≥ 200, whereas in the high-flow nasal oxygen group, the spontaneous breathing trial was conducted earlier when the PaO2/FiO2 ratio was 150 - 200.
BMC Pulm Med
January 2025
State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
Background: Studies on consistency among spirometry, impulse oscillometry (IOS), and histology for detecting small airway dysfunction (SAD) remain scarce. Considering invasiveness of lung histopathology, we aimed to compare spirometry and IOS with chest computed tomography (CT) for SAD detection, and evaluate clinical characteristics of subjects with SAD assessed by these three techniques.
Methods: We collected baseline data from the Early COPD (ECOPD) study.
PLoS One
January 2025
School of Life Course and Population Sciences, King's College London, London, United Kingdom.
Introduction: High-Flow Nasal Therapy (HFNT) is an innovative non-invasive form of respiratory support. Compared to standard oxygen therapy (SOT), there is an equipoise regarding the effect of HFNT on patient-centred outcomes among those at high risk of developing postoperative pulmonary complications after undergoing cardiac surgery. The NOTACS trial aims to determine the clinical and cost-effectiveness of HFNT compared to SOT within 90 days of surgery in the United Kingdom, Australia, and New Zealand.
View Article and Find Full Text PDFNeurophotonics
January 2025
University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States.
Significance: Cerebral blood flow (CBF) imaging is crucial for diagnosing cerebrovascular diseases. However, existing large neuroimaging techniques with high cost, low sampling rate, and poor mobility make them unsuitable for continuous and longitudinal CBF monitoring at the bedside.
Aim: We aimed to develop a low-cost, portable, programmable scanning diffuse speckle contrast imaging (PS-DSCI) technology for fast, high-density, and depth-sensitive imaging of CBF in rodents.
Antiviral Res
January 2025
CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France.
Nipah virus (NiV) is a lethal zoonotic paramyxovirus that can be transmitted from person to person through the respiratory route. There are currently no licensed vaccines or therapeutics. A lipopeptide-based fusion inhibitor was developed and previously evaluated for efficacy against the NiV-Malaysia strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!