Enzyme-catalyzed side reactions with molecular oxygen may contribute to cell signaling and neurodegenerative diseases.

Neurochem Res

School of Bioengineering and Bioinformatics, and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.

Published: May 2007

A link between neurodegeneration and well-characterized enzymatic and non-enzymatic reactions that produce reactive oxygen species (ROS) from O(2) is well established. Several enzymes that contain pyridoxal 5'-phosphate (PLP) or thiamine diphosphate (ThDP) catalyze side reactions (paracatalytic reactions) in the presence of ambient O(2). These side reactions produce oxidants such as hydrogen peroxide [H(2)O(2)] or extremely reactive peracids [RC(O)OOH]. We hypothesize that although these enzymes normally produce oxidants at low or undetectable levels, changes in substrate levels or disease-induced structural alterations may enhance interactions with O(2), thereby generating higher levels of reactive oxidants. These oxidants may damage the enzymes producing them, alter nearby macromolecules and/or destroy important metabolites/coenzymes. We propose that paracatalytic reactions with O(2) catalyzed by PLP-dependent decarboxylases and by ThDP-dependent enzymes within the alpha-keto acid dehydrogenase complexes may contribute to normal cellular signaling and to cellular damage in neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-006-9239-zDOI Listing

Publication Analysis

Top Keywords

side reactions
12
neurodegenerative diseases
8
reactions produce
8
paracatalytic reactions
8
produce oxidants
8
reactions
6
enzyme-catalyzed side
4
reactions molecular
4
molecular oxygen
4
oxygen contribute
4

Similar Publications

Objectives: Although bluetongue is not a contagious disease, it is easily transmitted and spread by appropriate insect vectors, causing great economic damage. Climate change has led to the fact that vectors and diseases have spread to the top of Northern Europe, causing great economic losses in livestock production. An even greater problem is controlling the disease, because numerous species of domestic and wild ruminants are susceptible to bluetongue.

View Article and Find Full Text PDF

The application of dynamic data in biomechanics is crucial; traditional laboratory-level force measurement systems are precise, but they are costly and limited to fixed environments. To address these limitations, empirical evidence supports the widespread adoption of portable force-measuring platforms, with recommendations for their ongoing development and enhancement. Taiyuan University of Technology has collaborated with KunWei Sports Technology Co.

View Article and Find Full Text PDF

Background: Diphenhydramine is an anti-tussive used periodically to treat seasonal colds, contact dermatitis, and anaphylactic reactions. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of diphenhydramine in predicting its systemic exposure among healthy pediatrics (children and adolescents) by leveraging data files from adults (young and elderly).

Methods: The data profiles comprising serum/plasma concentration over time and parameters related to diphenhydramine were scrutinized via exhaustive literature analysis and consolidated in the PK-Sim software version 11.

View Article and Find Full Text PDF

Background: Radiochemical purity is a key criterion for the quality of radiopharmaceuticals used in clinical practice. The joint improvement of analytical methods capable of identifying related radiochemical impurities and determining the actual radiochemical purity, as well as the improvement of synthesis methods to minimize the formation of possible radiochemical impurities, is integral to the implementation of high-tech nuclear medicine procedures. PSMA-targeted radionuclide therapy with lutetium-177 has emerged as an effective treatment option for prostate cancer, and [Lu]Lu-PSMA-617 and [Lu]Lu-PSMA have achieved global recognition as viable radiopharmaceuticals.

View Article and Find Full Text PDF

Innovative Approaches to Enhancing the Biomedical Properties of Liposomes.

Pharmaceutics

November 2024

Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania.

Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!