Indomethacin induces apoptosis in 786-O renal cell carcinoma cells by activating mitogen-activated protein kinases and AKT.

Eur J Pharmacol

Division of Urology, Department of Education and Research, Taichung Veterans General Hospital, and Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan.

Published: June 2007

Studies on chemoprevention of cancer are generating increasing interest. The anti-neoplastic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) involves cyclooxygenase (COX)-dependent and COX-independent mechanisms. Evidence suggests that mitogen-activated protein kinases (MAPKs) may mediate apoptotic signaling induced by anti-neoplastic agents. While many reports have revealed the existence of MAPK activation in apoptosis induced by various stimuli, the signaling transduction pathways used by NSAIDs to trigger apoptosis in human renal cell carcinoma (RCC) remain largely unknown. Treatment of RCC 786-O cells with indomethacin resulted in growth regression and apoptosis. Caspase-dependent apoptosis was evidenced by the detection of enzymatic activities of caspase-3, caspase-6, and caspase-9 and suppression of toxicity using a caspase inhibitor. Indomethacin treatment was associated with increased expression of glucose-regulated protein 78 (GRP78) and C/EBP homologus protein (CHOP) and activation of ATF-6, characteristics of endoplasmic reticulum stress. In addition, the concomitant induction of peroxisome proliferator-activated receptor (PPAR), especially PPAR-beta, was apparent in treated cells. Western blotting revealed the activation of extracellular signal-regulated kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK) with indomethacin treatment. Selective inhibitors of ERK, p38 MAPK, and JNK suppressed the induction of GRP78, CHOP, and PPAR-beta, attenuated indomethacin-induced cytotoxicity and reduced increased caspase activity. LY294002, a phosphoinositide-3 kinase (PI3K)/AKT inhibitor, and Trolox, an antioxidant, suppressed indomethacin-induced cytotoxicity and caspase activation. Furthermore, Trolox attenuated indomethacin-induced increased phosphorylation in ERK, p38 MAPK, JNK, and AKT. In conclusion, our findings establish a mechanistic link between the oxidative stress, PI3K/AKT pathway, MAPK pathway and indomethacin-induced cellular alterations and apoptosis in 786-O cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2007.01.071DOI Listing

Publication Analysis

Top Keywords

erk p38
12
p38 mapk
12
apoptosis 786-o
8
renal cell
8
cell carcinoma
8
mitogen-activated protein
8
protein kinases
8
786-o cells
8
indomethacin treatment
8
mapk jnk
8

Similar Publications

Objective: This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)'s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.

View Article and Find Full Text PDF

Aortic dissection or rupture is a major cause of mortality in vascular Ehlers-Danlos Syndrome (vEDS), a connective tissue disorder caused by heterozygous mutations in the COL3A1 gene. C57BL6/J (BL6) mice carrying the Col3a1 G938D/+ mutation recapitulate the vEDS vascular phenotype and die suddenly of aortic rupture/dissection. However, 129S6/SvEvTac (129) mice expressing the same Col3a1 G938D/+ mutation show near-complete life-long protection from vascular rupture.

View Article and Find Full Text PDF

extract ameliorates motor dysfunc-tion in mouse Parkinsons disease model through inhibiting neuronal apoptosis.

Zhejiang Da Xue Xue Bao Yi Xue Ban

January 2025

School of Medicine, Hangzhou City University, Zhejiang Provincial Key Laboratory of Novel Targets and Drug Study for Neural Repair, Hangzhou 310015, China.

Objectives: To investigate the protective effects and underlying mechanisms of extract on motor dysfunction in mouse model of Parkinson's disease (PD).

Methods: Eighty C57BL/6 male mice were randomly divided into five groups: control group, PD model group, levodopa treatment group (positive control group), low-dose GP treatment group (LD-GP group), and high-dose GP treatment group (HD-GP group), with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata in mice of last 5 groups.

View Article and Find Full Text PDF

The search for new anticancer compounds is a major focus for researchers in chemistry, biology, and medicine. Cancer affects people of all ages and regions, with rising incidence rates. It does not discriminate by age or gender, making it a significant threat to humanity.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by immune dysregulation and excessive cytokine production. This study aimed to explore the potential of Camellia sinensis L. water extract (CSE) as a treatment for AD by the impact of CSE on inflammatory responses in keratinocytes, particularly concerning the production of inflammatory cytokines and the modulation of signaling pathways relevant to AD pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!