Commercial cured ham formulated with or without potassium lactate and sodium diacetate was inoculated with Listeria monocytogenes and stored to simulate conditions of processing, retail, and home storage. The ham was sliced, inoculated with a 10-strain composite of L. monocytogenes (1 to 2 log CFU/cm2), vacuum packaged, and stored at 4 degrees C to simulate contamination following lethality treatment at processing (first shelf life). After 10, 20, 35, and 60 days of storage, packages were opened, samples were tested, and bags with remaining slices were reclosed with rubber bands. At the same times, portions of original product (stored at 4 degrees C in original processing bags) were sliced, inoculated, and packaged in delicatessen bags to simulate contamination during slicing at retail (second shelf life). Aerobic storage of both sets of packages at 7 degrees C for 12 days was used to reflect domestic storage conditions (home storage). L. monocytogenes populations were lower (P < 0.05) during storage in ham formulated with lactate-diacetate than in product without antimicrobials under both contamination scenarios. Inoculation of ham without lactate-diacetate allowed prolific growth of L. monocytogenes in vacuum packages during the first shelf life and was the worst case contamination scenario with respect to pathogen numbers encountered during home storage. Under the second shelf life contamination scenario, mean growth rates of the organism during home storage ranged from 0.32 to 0.45 and from 0.18 to 0.25 log CFU/cm2/day for ham without and with lactate-diacetate, respectively, and significant increases in pathogen numbers (P < 0.05) were generally observed after 4 and 8 days of storage, respectively. Regardless of contamination scenario, 12-day home storage of product without lactate-diacetate resulted in similar pathogen populations (6.0 to 6.9 log CFU/cm2) (P > 0.05). In ham containing lactate-diacetate, similar counts were found during the home storage experiment under both contamination scenarios, and only in 60-day-old product did samples from the first shelf life have higher (P < 0.05) pathogen numbers than those found in samples from the second shelf life. These results should be useful in risk assessments and for the establishment of "sell by" and "consume by" date labels for refrigerated ready-to-eat meat products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-70.2.378 | DOI Listing |
Int J Biol Macromol
January 2025
Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, Guangdong, China. Electronic address:
Fruit spoilage caused by microorganisms results in huge economic losses and health risks worldwide every year. To develop an intelligent antimicrobial material capable of responding to the physiological activity of postharvest fruits and releasing antibacterial agents on demand, we fabricated a pH-responsive film for the release of chlorine dioxide (ClO) using carboxymethyl cellulose (CMC) and sodium chlorite (NaClO) via the solution casting method, with a CMC:NaClO ratio of 1:2 w/w. An acid environment simulated by 4 % acetic acid activated 43 % of ClO released by the film within 7 days.
View Article and Find Full Text PDFFood Chem
December 2024
Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel. Electronic address:
Durian (Durio zibethinus Murr.) is a seasonal fruit with a short harvesting period, requiring postharvest processing such as cutting, peeling, freeze-drying, cooking, and frying to enhance its shelf life and nutritional quality. In this study, fresh Monthong durian (MTD), MTD Sticks, MTD Cake, and MTD Chips were analyzed for polyphenols, phenolic acids, tannins, flavonoids and thermal stability.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia.
Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.
Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China. Electronic address:
Sucrose laurate, a commonly used emulsifier, was investigated to explore its preservative effect combined with nisin using Bacillus subtilis as indicator. The results suggested that sucrose laurate and nisin exhibited synergistic antibacterial effect with the fractional inhibitory concentration index of 0.5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!