Semiconductor nanocrystals produced by means of colloidal chemistry in a solvent medium are an attractive class of nanometer-sized building blocks from which to create complex materials with unique properties for a variety of applications. Their optical and electronic properties can be tailored easily, both by their chemical composition and particle size. While colloidal nanocrystals emitting in the infrared region have seen a burst of attention during the last decade there is clearly a paucity of review articles covering their synthesis, assembly, spectroscopic characterization, and applications. This Review comprehensively addresses these topics for II-VI, III-V, and IV-VI nanocrystals, examples being HgTe and Cd(x)Hg(1-) (x)Te, InP and InAs, and PbS, PbSe, and PbTe, respectively. Among the applications discussed here are optical amplifier media for telecommunications systems, electroluminescence devices, and noninvasive optical imaging in biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.200600625 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
Background: Regenerating periodontal ligament (PDL) tissue is a vital challenge in dentistry that aims to restore periodontal function and aesthetics. This study explores a tissue engineering strategy that combines polycaprolactone (PCL)/collagen/cellulose acetate electrospun scaffolds with collagen hydrogels to deliver curcumin-loaded ZIF-8 nanoparticles fand periodontal ligament stem cells (PDLSCs).
Methods: Scaffolds were fabricated via electrospinningand collagen hydrogels incorporated PDLSCs and curcumin-loaded ZIF-8 nanoparticles (CURZIF-8) were developed using cross-linking.
Int J Nanomedicine
January 2025
Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy.
Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.
Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).
ACS Omega
January 2025
Federal University of Espírito Santo, Av Marechal Campos 1468, Vitória, ES 29.040 090, Brazil.
Monodisperse and colloidally stable magnetic iron oxide nanoparticles have been developed for diverse biotechnology applications. Although promising for the adsorption of organic molecules, the low density of adsorption sites in these nanoparticles has been a significant challenge. In this study, an optimized factorial design with response surface methodology (RSM) was employed to produce small Superparamagnetic Iron Oxide Nanoparticles (SPIONs) stabilized with tetraethoxysilane (TEOS).
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Engineering, Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Kingdom of Saudi Arabia.
Detection of biomolecules, Glutathione (GSH) in particular, is important because it helps assess antioxidant capacity, cellular protection, detoxification processes, and potential disease associations. Monitoring glutathione levels can provide valuable information about overall health and well-being. Many medical disorders have been connected to glutathione levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!