Angiotensin converting enzyme (ACE) 2 is a carboxypeptidase that shares 42% amino acid homology with ACE. Little is known about the regulation or pattern of expression of ACE2 in the mouse lung, including its definitive cellular distribution or developmental changes. Based on Northern blot and RT-PCR data, we report two distinct transcripts of ACE2 in the mouse lung and kidney and describe a 5' exon 1a previously unidentified in the mouse. Western blots show multiple isoforms of ACE2, with predominance of a 75-80 kDa protein in the mouse lung versus a 120 kDa form in the mouse kidney. Immunohistochemistry localizes ACE2 protein to Clara cells, type II cells, and endothelium and smooth muscle of small and medium vessels in the mouse lung. ACE2 mRNA levels peak at embryonic day 18.5 in the mouse lung, and immunostaining demonstrates protein primarily in the bronchiolar epithelium at that developmental time point. In murine cell lines ACE2 is strongly expressed in the Clara cell line mtCC, as opposed to the low mRNA expression detected in E10 (type I-like alveolar epithelial cell line), MLE-15 (type II alveolar epithelial cell line), MFLM-4 (fetal pulmonary vasculature cell line), and BUMPT-7 (renal proximal tubule cell line). In summary, murine pulmonary ACE2 appears to be primarily epithelial, is developmentally regulated, and has two transcripts that include a previously undescribed exon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166549 | PMC |
http://dx.doi.org/10.1002/jcb.21248 | DOI Listing |
Geroscience
January 2025
Buck Institute for Research On Aging, Novato, CA, 94945, USA.
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.
View Article and Find Full Text PDFJ Anat
January 2025
Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany.
Obesity, along with hypoxia, is known to be a risk factor for pulmonary hypertension (PH), which can lead to right ventricular hypertrophy and eventually heart failure. Both obesity and PH influence the autonomic nervous system (ANS), potentially aggravating changes in the right ventricle (RV). This study investigates the combined effects of obesity and hypoxia on the autonomic innervation of the RV in a mouse model.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFJ Transl Med
January 2025
Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.
Background: PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target.
View Article and Find Full Text PDFInflammation
January 2025
Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!