Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The site of action of cysteine-proteinases (CPs) and matrix metalloproteinases (MMPs) in the degradation of bone collagen by osteoclasts was investigated by evaluating the effects of the CP-inhibitor trans-epoxy-succinyl-L-leucylamido (4-guanidino)-butane (E-64) and the MMP-inhibitor N-(3-N-benzyloxycarbonyl amino-1-R-carboxypropyl)-L-leucyl-O-methyl-L-tyrosine N-methylamide (Cl-1) in an in vitro model system of PTH-stimulated mouse calvaria. In the presence of each of the two inhibitors a large area of collagen free of mineral crystallites was seen adjacent to the ruffled border of the osteoclasts. Following a culture period of 24 h this area proved to be about 10 times larger in inhibitor-treated explants than in controls. Moreover the percentage of osteoclasts in close contact with such demineralized bone areas appeared to be significantly higher in inhibitor-treated explants than in control specimens (60% and 5%, respectively). These effects were not apparent when the osteoclastic activity was inhibited with calcitonin. No significant differences were found between the effects of the two inhibitors, E-64 and Cl-1. Our observations indicate that under the influence of inhibitors of MMPs and CPs demineralization of bone by osteoclasts proceeded up to a certain point whereas matrix degradation was strongly inhibited. It is concluded that within the osteoclastic resorption lacuna both CPs and MMPs participate in the degradation of the collagenous bone matrix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.1041500202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!