Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Capsaicin, the pungent principle in hot peppers, acts to deter mammals from consuming pungent pepper pods. Capsaicinoid biosynthesis is restricted to the genus Capsicum and results from the acylation of the aromatic compound, vanillylamine, with a branched-chain fatty acid. The presence of capsaicinoids is controlled by the Pun1 locus, which encodes a putative acyltransferase. In its homozygous recessive state, pun1/pun1, capsaicinoids are not produced by the pepper plant. HPLC analysis confirmed that capsaicinoids are only found in the interlocular septa of pungent pepper fruits. Immunolocalization studies showed that capsaicinoid biosynthesis is uniformly distributed across the epidermal cells of the interlocular septum. Capsaicinoids are secreted from glandular epidermal cells into subcuticular cavities that swell to form blisters along the epidermis. Blister development is positively associated with capsaicinoid accumulation and blisters are not present in non-pungent fruit. A genetic study was used to determine if the absence of blisters in non-pungent fruit acts independently of Pun1 to control pungency. Screening of non-pungent germplasm and genetic complementation tests identified a previously unknown recessive allele of Pun1, named pun1(2). Sequence analysis of pun1(2) revealed that a four base pair deletion results in a frameshift mutation and the predicted production of a truncated protein. Genetic analysis revealed that pun1(2) co-segregated exactly with the absence of blisters, non-pungency, and a reduced transcript accumulation of several genes involved in capsaicinoid biosynthesis. Collectively, these results establish that blister formation requires the Pun1 allele and that pun1(2) is a recessive allele from C. chinense that results in non-pungency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erl243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!