Damaged articular cartilage rarely heals or regenerates in middle-aged and elderly adults, suggesting that the chondrogenic potential of mesenchymal stem cells declines with age. To test this hypothesis, we measured the responses of rat bone marrow-derived mesenchymal stem cells (BMSCs) to chondrogenic induction in vitro. BMSCs from immature rats (1 week old), young adult rats (12 weeks old), and old adult rats (1 year old) were analyzed for cartilage extracellular matrix (ECM) production. Histologic analysis showed strong cartilage ECM formation by BMSCs from 1-week-old rats, but not by BMSCs from 12-week-old or 1-year-old rats. Real-time polymerase chain reaction revealed age-related declines in messenger RNA encoding type II collagen, aggrecan, and link protein, three major cartilage ECM components. Microarray analysis indicated significant age-related differences in the expression of genes that influence cartilage ECM formation. These findings support the hypothesis that the chondrogenic potential of mesenchymal stem cells declines with age.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/62.2.136DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
12
stem cells
12
cartilage ecm
12
rat bone
8
bone marrow-derived
8
chondrogenic potential
8
potential mesenchymal
8
cells declines
8
declines age
8
adult rats
8

Similar Publications

ALG5 downregulation inhibits osteogenesis and promotes adipogenesis by regulating the N-glycosylation of SLC6A9 in osteoporosis.

Cell Mol Life Sci

January 2025

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, China.

Osteoporosis is characterized by decreased bone mass and accumulation of adipocytes in the bone marrow. The mechanism underlying the imbalance between osteoblastogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMSCs) remains unclear. We found that ALG5 was significantly downregulated in BMSCs from osteoporotic specimens.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a group of severe neurodevelopmental disorders. This study aimed to elucidate the potential ameliorating effect of postnatal administration of MSCs-derived Exo in a rat model of ASD. Male pups were divided into control (Cont), (VPA); pups of pregnant rats injected with VPA subcutaneously (S.

View Article and Find Full Text PDF

This study tested whether combined ceftriaxone and adipose-derived mesenchymal stem cells (ADMSCs) would defend the spinal cord against acute spinal infection (ASI) in rodent. Adult-Male-SD rats were grouped into groups 1 (SC)/2 (ASI)/3 (ASI + ceftriaxone from days 2 to 28 after ASI induction)/4 (ASI + allogenic ADMSCs from day 2 for a total of 3 doses/3 consecutive intervals by intravenous injection)/5 (ASI + combined ceftriaxone and ADMSC) and spinal cord tissues were harvested by day 28. Circulatory levels of TNF-α/IL-6 at days 7 and 28, and these two parameters in spinal fluid at day 28 were lowest in group 1, highest in group 2, significantly lower in group 5 than in groups 3/4, and significantly lower in group 3 than in group 4 (all p < 0.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is an energy-consuming organ, and its functional dysregulation contributes to the development of metabolic diseases and obesity. BAT function is regulated by the sympathetic nervous system but declines with age, which is partly caused by reduced sympathetic nerve fibers innervating BAT. Thus far, the role of mesenchymal stromal/stem cells in age-related BAT dysfunction remains unknown.

View Article and Find Full Text PDF

After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!