The transcription and DNA repair factor TFIIH is composed of 10 subunits. Mutations in the XPB, XPD, and p8 subunits are genetically linked to human diseases, including cancer. However, no reports of mutations in other TFIIH subunits have been reported in higher eukaryotes. Here, we analyze at genetic, molecular, and biochemical levels the Drosophila melanogaster p52 (DMP52) subunit of TFIIH. We found that DMP52 is encoded by the gene marionette in Drosophila and that a defective DMP52 produces UV light-sensitive flies and specific phenotypes during development: organisms are smaller than their wild-type siblings and present tumors and chromosomal instability. The human homologue of DMP52 partially rescues some of these phenotypes. Some of the defects observed in the fly caused by mutations in DMP52 generate trichothiodystrophy and cancer-like phenotypes. Biochemical analysis of DMP52 point mutations introduced in human p52 at positions homologous to those of defects in DMP52 destabilize the interaction between p52 and XPB, another TFIIH subunit, thus compromising the assembly of the complex. This study significantly extends the role of p52 in regulating XPB ATPase activity and, consequently, both its transcriptional and nucleotide excision repair functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899989 | PMC |
http://dx.doi.org/10.1128/MCB.00030-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!