2-arachidonoylglycerol (2-AG) is an endogenous ligand for the cannabinoid receptors with a variety of potent biological activities. In this study, we first examined the effects of potassium-induced depolarization on the level of 2-AG in rat brain synaptosomes. We found that a significant amount of 2-AG was generated in the synaptosomes following depolarization. Notably, depolarization did not affect the levels of other molecular species of monoacylglycerols. Furthermore, the level of anandamide was very low and did not change markedly following depolarization. It thus appeared that the depolarization-induced accelerated generation is a unique feature of 2-AG. We obtained evidence that phospholipase C is involved in the generation of 2-AG in depolarized synaptosomes: U73122, a phospholipase C inhibitor, markedly reduced the depolarization-induced generation of 2-AG, and the level of diacylglycerol was rapidly elevated following depolarization. A significant amount of 2-AG was released from synaptosomes upon depolarization. Interestingly, treatment of the synaptosomes with SR141716A, a CB1 receptor antagonist, augmented the release of glutamate from depolarized synaptosomes. These results strongly suggest that the endogenous ligand for the cannabinoid receptors, i.e. 2-AG, generated through increased phospholipid metabolism upon depolarization, plays an important role in attenuating glutamate release from the synaptic terminals by acting on the CB1 receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvm070 | DOI Listing |
PLoS Biol
January 2025
Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America.
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Nutrition and Exercise Physiology, University of Missouri-Columbia, Columbia, Missouri, USA.
Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2).
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon.
Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA.
is a fungal pathogen that can cause lethal disease in immunocompromised patients. Immunocompetent host immune responses, such as formation of pulmonary granulomas, control the infection and prevent disseminated disease. Little is known about the immunological conditions establishing the latent infection granuloma in the lungs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!