Construction of marker-free transplastomic plants.

Curr Opin Biotechnol

Waksman Institute, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8020, USA.

Published: April 2007

Because of its prokaryotic-type gene expression machinery, maternal inheritance and the opportunity to express proteins at a high level, the plastid genome (plastome or ptDNA) is an increasingly popular target for engineering. The ptDNA is present as up to 10,000 copies per cell, making selection for marker genes essential to obtain plants with uniformly transformed ptDNA. However, the marker gene is no longer desirable when homoplastomic plants are obtained. Marker-free transplastomic plants can now be obtained with four recently developed protocols: homology-based excision via directly repeated sequences, excision by phage site-specific recombinanses, transient cointegration of the marker gene, and the cotransformation-segregation approach. Marker excision technology will benefit applications in agriculture and in molecular farming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2007.02.003DOI Listing

Publication Analysis

Top Keywords

marker-free transplastomic
8
transplastomic plants
8
marker gene
8
construction marker-free
4
plants
4
plants prokaryotic-type
4
prokaryotic-type gene
4
gene expression
4
expression machinery
4
machinery maternal
4

Similar Publications

This study describes an optimized plastid genetic engineering platform to produce full marker-free transplastomic plants with transgene integrated at homoplasmy in one step in tissue culture. Plastid engineering is attractive for both biotechnology and crop improvement due to natural bio-confinement from maternal inheritance, the absence of transgene positional effects and silencing, the ability to express transgenes in operons, and unparalleled production of heterologous proteins. While plastid engineering has had numerous successes in the production of high-value compounds, no transplastomic plants have been approved for use in agriculture.

View Article and Find Full Text PDF

'Marker-free' strategies for creating transgenic microorganisms avoid the issue of potential transmission of antibiotic resistance genes to other microorganisms. An already-established strategy for engineering the chloroplast genome (=plastome) of the green microalga involves the restoration of photosynthetic function using a recipient strain carrying a plastome mutation in a key photosynthesis gene. Selection for transformant colonies is carried out on minimal media, such that only those cells in which the mutated gene has been replaced with a wild-type copy carried on the transgenic DNA are capable of phototrophic growth.

View Article and Find Full Text PDF

Plastid engineering using episomal DNA.

Plant Cell Rep

July 2023

Center for Agricultural Synthetic Biology (CASB), University of Tennessee, 2640 Morgan Circle Drive, Knoxville, TN, 37996, USA.

Novel episomal systems have the potential to accelerate plastid genetic engineering for application in plant synthetic biology. Plastids represent valuable subcellular compartments for genetic engineering of plants with intrinsic advantages to engineering the nucleus. The ability to perform site-specific transgene integration by homologous recombination (HR), coordination of transgene expression in operons, and high production of heterologous proteins, all make plastids an attractive target for synthetic biology.

View Article and Find Full Text PDF

Sustainable and economically viable support for an ever-increasing global population requires a paradigm shift in agricultural productivity, including the application of biotechnology to generate future crop plants. Current genetic engineering approaches aimed at enhancing the photosynthetic efficiency or composition of the harvested tissues involve relatively simple manipulations of endogenous metabolism. However, radical rewiring of central metabolism using new-to-nature pathways, so-called "synthetic metabolism", may be needed to really bring about significant step changes.

View Article and Find Full Text PDF

Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery.

Plant Biotechnol J

October 2021

Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Current approaches for oral health care rely on procedures that are unaffordable to impoverished populations, whereas aerosolized droplets in the dental clinic and poor oral hygiene may contribute to spread of several infectious diseases including COVID-19, requiring new solutions for dental biofilm/plaque treatment at home. Plant cells have been used to produce monoclonal antibodies or antimicrobial peptides for topical applications to decrease colonization of pathogenic microbes on dental surface. Therefore, we investigated an affordable method for dental biofilm disruption by expressing lipase, dextranase or mutanase in plant cells via the chloroplast genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!