Telomerase, a reverse transcriptase involved in the maintenance of telomere function and cellular replicative capacity, is thought to be regulated by nitric oxide (NO). Here, we have used pharmacological tools and RNA interference to re-assess the role of NO in the regulation of telomerase and senescence of human umbilical vein endothelial cells. Acute or chronic treatment of these cells with the NO donors diethylenetriamine/NO (DETA-NO) or S-nitroso-N-acetylpenicillamine (SNAP) at concentrations which generated NO in the 1-300 nM range did not modulate telomerase activity. Similarly these agents did not affect cellular replicative capacity during long-term sub-cultivation. The NO synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (1 mM) reduced basal levels of c-GMP by 50% but had no effect on telomerase activity or replicative capacity. Withdrawal of ascorbic acid increased the intracellular pro-oxidant capacity, reduced telomerase activity and increased the accumulation of senescent cells upon serial passage in culture. However, this shift to a more oxidative redox state did not unmask the putative capacity of NO to modulate telomerase or senescence. Infection of cells with a lentiviral vector expressing a small hairpin RNA targeted against endothelial NOS inhibited endogenous NO production completely but failed to affect the decrease of telomerase activity or the accumulation of senescent cells observed with passage in culture. Our findings suggest that physiological concentrations of NO do not modulate telomerase levels or replicative capacity of endothelial cells, regardless of their cellular oxidative status.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2007.01.007DOI Listing

Publication Analysis

Top Keywords

telomerase activity
20
replicative capacity
20
endothelial cells
12
modulate telomerase
12
telomerase
9
nitric oxide
8
activity replicative
8
cellular replicative
8
telomerase senescence
8
accumulation senescent
8

Similar Publications

A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.

View Article and Find Full Text PDF

Design and synthesis of novel structures with anti-tumor effects: Targeting telomere G-quadruplex and hTERT.

Bioorg Med Chem Lett

December 2024

Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, Harbin, PR China. Electronic address:

The telomeric G-quadruplex (G4) along with the telomerase catalytic subunit hTERT are crucial in the extension of telomeres. Tumor cells can establish replicative immortality by activating the telomere-maintenance mechanism (TMM).Small molecule ligands can limit cancer telomere lengthening by by targeting at G4 and hTERT.

View Article and Find Full Text PDF

RTEL1 is upregulated in gastric cancer and promotes tumor growth.

J Cancer Res Clin Oncol

December 2024

Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China.

Gastric cancer (GC) is one of the most common cancers worldwide, with increasing incidence and mortality rates. It is typically diagnosed at advanced stages, leading to a poor prognosis. GC is a highly heterogeneous disease and its progression is associated with complex interplay between genetic and environmental factors.

View Article and Find Full Text PDF

Telomerase activation can lead to the escape from cell senescence and immortalization, playing a crucial role in the growth and proliferation of cancer cells. Therefore, the detection of telomerase activity is essential for cancer diagnosis and treatment. Herein, we develop a novel ultrasensitive and visually detectable platform.

View Article and Find Full Text PDF

Aims: High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!