The ideal gene-therapy vector for treating genetic disorders should deliver intact therapeutic genes and their essential regulatory elements into the specific "safe genomic site" and realize long-term, self-regulatory expression. For beta-thalassemia gene therapy, viral vectors have been broadly used, but the accompanying insertional mutation and immunogenicity remain problematic. Hence, we aimed to develop new non-viral vectors that are efficient and safe in treating diseases. As previous studies have demonstrated that physiological expression of beta-globin genes requires both a 5' locus control region and 3' specific elements, we constructed a new human chromosome-derived targeting vector to transfer the intact beta-globin gene cluster into K562 cells. The whole beta-globin gene cluster was precisely integrated into the target site and expressed in a self-regulatory pattern. The results proved that the human chromosome-derived vector was specifically targeted to the human genome and this could provide a novel platform for further gene therapy research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.02.074DOI Listing

Publication Analysis

Top Keywords

beta-globin gene
12
gene cluster
12
transfer intact
8
intact beta-globin
8
targeting vector
8
gene therapy
8
human chromosome-derived
8
gene
5
site-specific transfer
4
beta-globin
4

Similar Publications

Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells.

Cell Rep

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia.

View Article and Find Full Text PDF

Circulating biomarkers associated with pediatric sickle cell disease.

Front Mol Biosci

December 2024

Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.

Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.

View Article and Find Full Text PDF

Introduction: β-thalassemia is a common genetic disease mainly caused by point mutations in the β-globin gene, eliciting a high prevalence in South China. The aim of the present study is to identify a rare HBB: c.316-90 A > G variant and provide the clinical and hematological features in two unrelated Chinese families.

View Article and Find Full Text PDF

Haplotype-Resolved Genotyping and Association Analysis of 1,020 β-Thalassemia Patients by Targeted Long-Read Sequencing.

Adv Sci (Weinh)

December 2024

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Despite the well-documented mutation spectra of β-thalassemia, the genetic variants and haplotypes of globin gene clusters modulating its clinical heterogeneity remain incompletely illustrated. Here, a targeted long-read sequencing (T-LRS) is demonstrated to capture 20 genes/loci in 1,020 β-thalassemia patients. This panel permits not only identification of thalassemia mutations at 100% of sensitivity and specificity, but also detection of rare structural variants (SVs) and single nucleotide variants (SNVs) in modifier genes/loci.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!