Tissue-specific regulation of basic fibroblast growth factor mRNA levels by diabetes.

Diabetes

Department of Internal Medicine, University of Iowa, College of Medicine, Iowa City.

Published: February 1992

AI Article Synopsis

Article Abstract

Because basic fibroblast growth factor (bFGF) is recognized as an angiogenic factor and diabetes is characterized by multiple vascular complications, including diabetic microangiopathy, we examined the regulation of tissue bFGF mRNA levels by diabetes. Diabetes was induced in male Sprague-Dawley rats by injection of 125 mg/kg body wt i.v. streptozocin (STZ), with intensive insulin therapy initiated in half of the diabetic rats. Rats were killed 96 h postinjection of STZ. Tissue bFGF and insulinlike growth factor I (IGF-I) mRNA levels were measured simultaneously with a solution hybridization-RNase protection assay. bFGF mRNA levels increased from 1.7- to 2.7-fold in eye, heart, lung, and brain from diabetic compared with buffer-injected control rats. In skeletal muscle, bFGF mRNA levels decreased to 23% of control levels, whereas bFGF mRNA levels were unchanged in kidneys from diabetic versus control rats. Changes in tissue bFGF mRNA levels were partially reversed by insulin treatment in all tissues. In contrast, IGF-I mRNA levels were significantly decreased from 15 to 50% of control levels in all tissues studied except those in brain, which decreased to only 85% of control levels. These data demonstrate that bFGF mRNA levels are altered by diabetes in a tissue-specific fashion and are consistent with the hypothesis that increased production of bFGF may contribute to the development of diabetic microangiopathy in some tissues.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diab.41.2.222DOI Listing

Publication Analysis

Top Keywords

mrna levels
36
bfgf mrna
24
growth factor
12
levels
12
tissue bfgf
12
control levels
12
mrna
9
bfgf
9
basic fibroblast
8
fibroblast growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!