Arabidopsis Toc33 (atToc33) is a GTPase and a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex that associates with precursor proteins during protein import into chloroplasts. By inference from the crystal structure of psToc34, a homologue in pea, the arginine at residue 130 (Arg(130)) has been implicated in the formation of the atToc33 dimer and in intermolecular GTPase activation within the dimer. Here we report the crystal structure at 3.2-A resolution of an atToc33 mutant, atToc33(R130A), in which Arg(130) was mutated to alanine. Both in solution and in crystals, atToc33(R130A) was present in its monomeric form. In contrast, both wild-type atToc33 and another pea Toc GTPase homologue, pea Toc159 (psToc159), were able to form dimers in solution. Dimeric atToc33 and psToc159 had significantly higher GTPase activity than monomeric atToc33, psToc159, and atToc33(R130A). Molecular modeling using the structures of psToc34 and atToc33(R130A) suggests that, in an architectural dimer of atToc33, Arg(130) from one monomer interacts with the beta-phosphate of GDP and several other amino acids of the other monomer. These results indicate that Arg(130) is critical for dimer formation, which is itself important for GTPase activity. Activation of GTPase activity by dimer formation is likely to be a critical regulatory step in protein import into chloroplasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M608385200 | DOI Listing |
ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface.
View Article and Find Full Text PDFMechanical force orchestrates a myriad of cellular events including inhibition of axon regeneration, by locally activating the mechanosensitive ion channel Piezo enriched at the injured axon tip. However, the cellular mechanics underlying Piezo localization and function remains poorly characterized. We show that the RNA repair/splicing enzyme Rtca acts upstream of Piezo to modulate its expression and transport/targeting to the plasma membrane via Rab10 GTPase, whose expression also relies on Rtca.
View Article and Find Full Text PDFThe human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 via motifs that also catalyze SUMO E3 ligase activity.
View Article and Find Full Text PDFEMBO J
January 2025
Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
Small GTPase RHEB is a well-known mTORC1 activator, whereas neddylation modifies cullins and non-cullin substrates to regulate their activity, subcellular localization and stability. Whether and how RHEB is subjected to neddylation modification remains unknown. Here, we report that RHEB is a substrate of NEDD8-conjugating E2 enzyme UBE2F.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.
Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!