Biochemical anti-opioid action of NPFF2 receptors in rat spinal cord.

Neurosci Res

Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France.

Published: May 2007

Neuropeptide FF (NPFF) agonists counteract the cellular opioid actions. We demonstrate for the first time a biochemical anti-opioid effect of NPFF receptors in the rat spinal cord by using the [(35)S]GTPgammaS binding assay in autoradiography. The mu agonist DAMGO as well as the potent and selective NPFF(2) agonist dNPA, stimulated [(35)S]GTPgammaS binding at different optimal GDP concentrations. dNPA decreased the effects induced by DAMGO alone; the maximal of G-protein coupling was decreased but not the potency of opioid agonist. We conclude that NPFF(2) receptors are coupled to G-protein in the rat spinal cord and could exert a molecular anti-opioid effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2007.01.013DOI Listing

Publication Analysis

Top Keywords

rat spinal
12
spinal cord
12
biochemical anti-opioid
8
npff2 receptors
8
receptors rat
8
[35s]gtpgammas binding
8
anti-opioid action
4
action npff2
4
cord neuropeptide
4
neuropeptide npff
4

Similar Publications

Despite advancements in preclinical and clinical spinal cord stimulation (SCS) research, the mechanisms of SCS action remain unclear. This may result from challenges in translatability of findings between species. Our systematic review (PROSPERO: CRD42023457443) aimed to comprehensively characterize the important translational components of preclinical SCS models, including stimulating elements and stimulation specifications.

View Article and Find Full Text PDF

The sphingosine-1-phosphate-5 (S1P) receptor is one of the five membrane G protein-coupled receptors that are activated by the lysophospholipid, sphingosine-1-phosphate, resulting in regulation of many cellular processes. S1P receptors are located on oligodendrocytes and are proposed to influence oligodendrocyte physiology. Understanding S1P modulation during processes such as remyelination could have potential applications for demyelinating CNS disorders such as multiple sclerosis (MS).

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Size effect-based improved antioxidant activity of selenium nanoparticles regulating Anti-PI3K-mTOR and Ras-MEK pathways for treating spinal cord injury to avoid hormone shock-induced immunosuppression.

J Nanobiotechnology

January 2025

Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.

Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!