Cloning and characterization of Xenopus laevis Smac/DIABLO.

Gene

UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.

Published: May 2007

Mitochondria-mediated apoptosis plays a central role in animal development and tissue homeostasis, and mitochondria contain several pro-apoptotic proteins that have key roles in apoptosis. Smac/DIABLO was identified as a mitochondrial protein that is released into the cytosol following apoptotic stimuli, subsequently blocking the anti-apoptotic activity of inhibitor of apoptosis proteins. Through expressed sequence tag (EST) analysis we detected evidence for the presence of a number of Xenopus counterparts to mammalian mitochondrial pro-apoptotic proteins. EST and genome sequencing provides evidence for the presence of endonuclease G, AIF, HtrA/Omi and Smac/DIABLO in Xenopus laevis and tropicalis. Here we report the cloning and characterization of X. laevis Smac/DIABLO (XSmac/DIABLO). In this study degenerate primers based on conserved regions of human, mouse and an EST predicted Smac from X. tropicalis were used to amplify cDNA templates from X. laevis. The full length cDNA of Xenopus Smac contained a complete open reading frame of 732 bp, encoding 244 amino acids, that when expressed is observed to be approximately 27 kDa in size. The protein sequence is 49% identical and 71% similar to human Smac, and includes the motifs involved in mitochondrial targeting, and IAP-binding (AIPV). Smac expression was detected throughout early development with multiple transcripts being detected by Northern blot analysis, suggesting the presence of alternatively spliced isoforms. Exogenous expression of Xenopus Smac enhances gamma-irradiation-induced apoptosis in HeLa cells, demonstrating its functional equivalence with mammalian forms. Our study has identified the third vertebrate homologue of Smac/DIABLO, with its structural and functional similarities to mammalian Smac/DIABLO further illustrating the evolutionary conservation of apoptotic pathways across vertebrate species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2006.12.010DOI Listing

Publication Analysis

Top Keywords

cloning characterization
8
xenopus laevis
8
laevis smac/diablo
8
pro-apoptotic proteins
8
evidence presence
8
xenopus smac
8
smac/diablo
6
xenopus
5
smac
5
characterization xenopus
4

Similar Publications

Light chain Split Luciferase assay implicates pathological NOTCH3 thiol reactivity in inherited cerebral small vessel disease.

J Biol Chem

January 2025

Departments of Neurology, University of Michigan, Ann Arbor, MI 48109; Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI 48105. Electronic address:

Stereotyped mutations in NOTCH3 drive CADASIL, the leading inherited cause of stroke and vascular dementia. The vast majority of these mutations result in alterations in the number of cysteines in the gene product. However, non-cysteine altering pathogenic mutations have also been identified, making it challenging to discriminate pathogenic from benign NOTCH3 sequence variants.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.

View Article and Find Full Text PDF

Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.

View Article and Find Full Text PDF

Characterization and Analysis of 2-(2-Phenylethyl)chromone Derivatives and Sesquiterpenoids from Agarwood of Four "Qi-Nan" Clones () with Different Induction Times.

Molecules

January 2025

The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.

In recent years, some new "Qi-Nan" clones of with the characteristics of easy induction and high-quality agarwood have been obtained, through the cultivation and propagation of grafted seedlings. These clones are used for the intensive production of high-quality agarwood. The speed of resin formation and yield are crucial for the development of the agarwood industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!