Neuregulins at the neuromuscular synapse: past, present, and future.

J Neurosci Res

Section of Neurobiology, Institute for Neuroscience and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-0248, USA.

Published: July 2007

At the developing vertebrate neuromuscular junction, neuregulins are growth/differentiation factors essential for terminal Schwann cell survival. Neuregulins have also been thought as the critical signals responsible for the increased transcription of acetylcholine receptor subunit genes at the neuromuscular synapse. This latter role is now highly controversial. This article reviews the evidence that has shaped the views of the neuregulins and how these views have been challenged. The most recent experiments indicate that neuregulin signaling to postsynaptic muscle fibers may modulate, rather than determine, acetylcholine receptor expression at the neuromuscular junction. Based on findings from my lab and those of others, I propose that this modulation might involve novel posttranscriptional molecular mechanisms. Finally, I also suggest that neuregulin signaling may have an important role to play in mediating the response of adult terminal Schwann cells to denervation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.21237DOI Listing

Publication Analysis

Top Keywords

neuromuscular synapse
8
neuromuscular junction
8
terminal schwann
8
acetylcholine receptor
8
neuregulin signaling
8
neuregulins
4
neuregulins neuromuscular
4
synapse future
4
future developing
4
developing vertebrate
4

Similar Publications

A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.

View Article and Find Full Text PDF

Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.

View Article and Find Full Text PDF

The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.

View Article and Find Full Text PDF

Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters.

Int J Mol Sci

November 2024

Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, P.O. Box 30, Kazan 420111, Russia.

γ-Aminobutyric acid (GABA) has a significant impact on the functioning of not only the central but also the peripheral part of the nervous system. Recently, various elements of the GABAergic signaling system have been discovered in the area of the neuromuscular junction of mammals. At the same time, the functional activity of membrane-bound GABA transporters (GATs) and their role in neuromuscular transmission have not been identified.

View Article and Find Full Text PDF

Motor axon regeneration after traumatic nerve injuries is a slow process that adversely influences patient outcomes because muscle reinnervation delays result in irreversible muscle atrophy and suboptimal axon regeneration. This advocates for investigating methods to accelerate motor axon growth. Electrical nerve stimulation and exercise both enhance motor axon regeneration in rodents and patients, but these interventions cannot always be easily implemented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!