Basic fibroblast growth factor (bFGF) and transforming growth factor-beta1 (TGF-beta1) play an important role in proliferation, differentiation, and survival of malignant gliomas and in normal glial cell biology. Because of these critical roles, potential interactions between these key growth factors were investigated. We previously demonstrated that bFGF potently stimulates TGF-beta1 release from rat glioma cells. The purpose of the present study was to elucidate the mechanism(s) of this regulatory effect, establish its functional importance, and examine whether it extends to nontransformed rat hypothalamic astrocytes (RHA). The results revealed that RHA express the high-affinity FGF(1-4) receptors, and similarly to glioma cells, bFGF stimulated TGF-beta1 release in an isoform-specific manner. A mediatory role for ERK signaling in bFGF-induced TGF-beta release was suggested by the fact that MEK1 inhibition prevented this effect. Additionally, bFGF enhanced MEK1/2 phosphorylation and ERK activation/nuclear translocation, which culminated in increased activity of AP-1-mediated gene transcription. bFGF markedly induced TGF-beta1 mRNA levels in an isoform-specific manner, an effect that was dependent on MEK/ERK/AP-1 signaling. Functionally, bFGF-induced proliferation of glioma cells was attenuated by MEK/ERK inhibition or immunoneutralization of TGF-beta1, suggesting that this pathway may have important implications for brain tumor progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.21182 | DOI Listing |
Background: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting various tumor-specific antigens, like interleukin 13 receptor alpha 2 (IL13RA2) and EGFRvIII, have been developed for glioblastoma (GBM). However, limited knowledge of BTE actions derived from studies conducted in immunocompromised animal models impedes progress in the field.
View Article and Find Full Text PDFSci Rep
January 2025
Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.
De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biological Information Processing, IBI-2: Mechanobiology, Research Centre Juelich, Juelich, Germany.
Targeting of diseased cells is one of the most urgently needed prerequisites for a next generation of potent pharmaceuticals. Different approaches pursued fail mainly due to a lack of specific surface markers. Developing an RNA-based methodology, we can now ensure precise cell targeting combined with selective expression of effector proteins for therapy, diagnostics or cell steering.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
Glioblastoma (GBM) is the most common intracranial malignancy, but current treatment options are limited. Super-enhancers (SEs) have been found to drive the expression of key oncogenes in GBM. However, the role of SE-associated long non-coding RNAs (lncRNAs) in GBM remains poorly understood.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Department of Culinary Arts & Hotel Food Service, Yeonsung University, Gyeonggi 14011, Korea.
The inhibitory effect of L. on adipocyte differentiation can be enhanced by lactic acid bacteria (LAB) fermentation. In this study, we assessed the cellulose resolution, L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!